$\infty$-former: Infinite Memory Transformer
概
在transformer中引入一种长期记忆机制.
主要内容
假设\(X \in \mathbb{R}^{L \times d}\), 即每一行\(x_i\)代表一个token对应的特征.
Attention需要进行如下的步骤:
Z = \mathrm{softmax}(\frac{QK^T}{\sqrt{d}})V.
\]
为了符号简易起见, 我们不考虑multi-head的情形, 下面的思想可以直接应用之.
我们知道, 可以通过径向基函数来逼近任意的连续函数:
\]
现在, 我们令\(t_i = \frac{i}{L}\), 即对\(L\)个tokens冠以时序, \(X\)的每一列都可以看成一个特殊的\(f_j(t)\)的位于\(t_i, i=0,1,\cdots, L-1\)处的值.
给定\(N\)个基函数\(\psi_k (t), k=0,1,\cdots, N-1\), 我们要通过求解系数\(\bm{b}_j = [b_{j0}, b_{j1},\cdots b_{j,N-1}]^T\)来逼近\(f_j\)(\(X\)的第\(j\)列).
设\(\Psi \in \mathbb{R}^{N \times L}, \Psi_{ki}=\psi_{k}(t_i)\), \(B \in \mathbb{R}^{d \times N}, B_{jk} = b_{jk}\).
作者通过岭回归来求解系数\(b\):
\]
其显示表达式为:
\]
故
\]
现在我们用\(\tilde{X} := \Psi^T B^T\)来代替\(X\), 则
\]
注意, 我们并不对\(Q\)进行替换, 因为这个只是用作长期的记录用, Q每次重新计算.
对于每个\(q_i\), 我们构建一个其关于\(t\)的密度函数\(p_i(t)\), 文中假设其满足高斯分布:
\]
\(\mu_i, \sigma_i^2\)分别通过如下估计:
=\mathrm{sigmoid} (w_{\mu}^T B^TW^K q_i), \\
\sigma^2_i = \mathrm{softplus} (w_{\sigma}^T K q_i)
=\mathrm{softplus} (w_{\sigma}^T B^TW^K q_i). \\
\]
注意最后令\(w^T\Psi^T = w^T\)既然\(\Psi\)是事先确定的.
我们知道
\]
实际上求解的是一个离散化的\(p_i(t)\), 即\(q_i\)和\(k_j\)的相合程度, 而
\]
实际上就是求解期望
\]
现在我们近似了一个连续的\(p_i(t)\), 也可以通过这种方式得到最后的\(z_i\):
=\mathbb{E}_{p_i}[\psi^T(t)B^TW^V]
=\mathbb{E}_{p_i}[\psi^T(t)]B^TW^V.
\]
当我们取\(\psi\)为高斯径向基函数的时候, 上述是由显示解的.
现在来剖析一下, 好在哪里?
原本的\(K\)是\(L\times d\)的, 现在由于我们只需要计算\(B^TW\), 故实际上只有\(N \times d\), 我们可以选取很大的\(L\)但是选择较小的\(N\)来避免较高的复杂度.
如何扩展?
难不成每一次都要重新计算\(B\)? 倘若真的是这样就谈不上是长期记忆了.
作者采取了一种比较巧的方法, 实际上, 现在的\(B\psi(t)\)可以看成是一个\(d\)维的向量函数.
我们首先将其进行压缩至\([0, \tau], \tau \in (0, 1)\):
\]
如此一来, 整个函数的能量集中在\([0, \tau]\)中, 我们可以用剩下的\((\tau, 1]\)来放置新的\(X\).
我们首先从\([0, \tau]\)中采样\(M\)个点\(t_0, \cdots, t_{M-1}\), 并得到:
\]
加上新的\(X_{new}\), 我们有
\]
对\(X\)按照上面的逻辑重新估计\(B\)即可更新记忆.
关于如何采样这\(M\)个点, 作者提了一种sticky memories的方法, 将其与密度函数联系在一起, 便不细讲了.
实验细节
在看这篇论文的时候, 困扰我的就是这个径向基函数是怎么选的?
举一个作者在Language Modeling中的例子便可:
选取150个高斯径向基函数\(\mathcal{N}(t;\mu, \sigma^2)\), 其中
\(\mu\)从\([0, 1]\)中均匀采样, \(\sigma \in \{0.01, 0.05\}\).
还有用KL散度防止一般化就不讲了. 感觉本文有趣的点就是压缩这个地方, 还有对\(\Psi\)的处理.
随机推荐
- [源码解析] PyTorch分布式优化器(1)----基石篇
[源码解析] PyTorch分布式优化器(1)----基石篇 目录 [源码解析] PyTorch分布式优化器(1)----基石篇 0x00 摘要 0x01 从问题出发 1.1 示例 1.2 问题点 0 ...
- k8s配置中心-configmap,Secret密码
目录 k8s配置中心-configmap,Secret 创建ConfigMap 使用ConfigMap subPath参数 Secret 官方文档 编写secret清单 使用secret 在 Pod ...
- Linux基础命令---ntpdate网络时间服务器
ntpdate ntpdate指令通过轮询指定为服务器参数的网络时间协议(NTP)服务器来设置本地日期和时间,从而确定正确的时间. 此命令的适用范围:RedHat.RHEL.Ubuntu.CentOS ...
- Mockito 入门详解
一个测试方法主要包括三部分: setup 执行操作 验证结果 public class CalculatorTest { Calculator mCalculator; @Before // setu ...
- NoSQL之Redis学习笔记
一.NoSQL与Redis 1.什么是NoSQL? NoSQL=Not Only SQL ,泛指非关系型数据库.随着互联网的兴起,传统的关系型数据库已经暴露了很多问题,NoSQL数据库的产生就是为了解 ...
- 转:UITableView学习笔记
UITableView学习笔记 作者:一片枫叶 看TableView的资料其实已经蛮久了,一直想写点儿东西,却总是因为各种原因拖延,今天晚上有时间静下心来记录一些最近学习的 TableV ...
- [BUUCTF]PWN——jarvisoj_fm
jarvisoj_fm 附件 步骤: 例行检查,32位,开启了canary和nx保护 运行一下程序,看看大概的情况 32位ida载入,shift+f12检索程序里的字符串,看见了 " /bi ...
- java 8 启动脚本优化 3
#!/bin/bash #链接文件 source /etc/profile #java虚拟机启动参数 #通过http://xxfox.perfma.com/jvm/check来检查参数的合理性 #各参 ...
- C++ 11 新特性: auto 和 decltype 区别和联系
一. auto简介编程时候常常需要把表达式的值付给变量,需要在声明变量的时候清楚的知道变量是什么类型.然而做到这一点并非那么容易(特别是模板中),有时候根本做不到.为了解决这个问题,C++11新标准就 ...
- python爬取信息到数据库与mysql简单的表操作
python 爬取豆瓣top250并导入到mysql数据库中 import pymysql import requests import re url='https://movie.douban.co ...