$\infty$-former: Infinite Memory Transformer
概
在transformer中引入一种长期记忆机制.
主要内容
假设\(X \in \mathbb{R}^{L \times d}\), 即每一行\(x_i\)代表一个token对应的特征.
Attention需要进行如下的步骤:
Z = \mathrm{softmax}(\frac{QK^T}{\sqrt{d}})V.
\]
为了符号简易起见, 我们不考虑multi-head的情形, 下面的思想可以直接应用之.
我们知道, 可以通过径向基函数来逼近任意的连续函数:
\]
现在, 我们令\(t_i = \frac{i}{L}\), 即对\(L\)个tokens冠以时序, \(X\)的每一列都可以看成一个特殊的\(f_j(t)\)的位于\(t_i, i=0,1,\cdots, L-1\)处的值.
给定\(N\)个基函数\(\psi_k (t), k=0,1,\cdots, N-1\), 我们要通过求解系数\(\bm{b}_j = [b_{j0}, b_{j1},\cdots b_{j,N-1}]^T\)来逼近\(f_j\)(\(X\)的第\(j\)列).
设\(\Psi \in \mathbb{R}^{N \times L}, \Psi_{ki}=\psi_{k}(t_i)\), \(B \in \mathbb{R}^{d \times N}, B_{jk} = b_{jk}\).
作者通过岭回归来求解系数\(b\):
\]
其显示表达式为:
\]
故
\]
现在我们用\(\tilde{X} := \Psi^T B^T\)来代替\(X\), 则
\]
注意, 我们并不对\(Q\)进行替换, 因为这个只是用作长期的记录用, Q每次重新计算.
对于每个\(q_i\), 我们构建一个其关于\(t\)的密度函数\(p_i(t)\), 文中假设其满足高斯分布:
\]
\(\mu_i, \sigma_i^2\)分别通过如下估计:
=\mathrm{sigmoid} (w_{\mu}^T B^TW^K q_i), \\
\sigma^2_i = \mathrm{softplus} (w_{\sigma}^T K q_i)
=\mathrm{softplus} (w_{\sigma}^T B^TW^K q_i). \\
\]
注意最后令\(w^T\Psi^T = w^T\)既然\(\Psi\)是事先确定的.
我们知道
\]
实际上求解的是一个离散化的\(p_i(t)\), 即\(q_i\)和\(k_j\)的相合程度, 而
\]
实际上就是求解期望
\]
现在我们近似了一个连续的\(p_i(t)\), 也可以通过这种方式得到最后的\(z_i\):
=\mathbb{E}_{p_i}[\psi^T(t)B^TW^V]
=\mathbb{E}_{p_i}[\psi^T(t)]B^TW^V.
\]
当我们取\(\psi\)为高斯径向基函数的时候, 上述是由显示解的.
现在来剖析一下, 好在哪里?
原本的\(K\)是\(L\times d\)的, 现在由于我们只需要计算\(B^TW\), 故实际上只有\(N \times d\), 我们可以选取很大的\(L\)但是选择较小的\(N\)来避免较高的复杂度.
如何扩展?
难不成每一次都要重新计算\(B\)? 倘若真的是这样就谈不上是长期记忆了.
作者采取了一种比较巧的方法, 实际上, 现在的\(B\psi(t)\)可以看成是一个\(d\)维的向量函数.
我们首先将其进行压缩至\([0, \tau], \tau \in (0, 1)\):
\]
如此一来, 整个函数的能量集中在\([0, \tau]\)中, 我们可以用剩下的\((\tau, 1]\)来放置新的\(X\).
我们首先从\([0, \tau]\)中采样\(M\)个点\(t_0, \cdots, t_{M-1}\), 并得到:
\]
加上新的\(X_{new}\), 我们有
\]
对\(X\)按照上面的逻辑重新估计\(B\)即可更新记忆.
关于如何采样这\(M\)个点, 作者提了一种sticky memories的方法, 将其与密度函数联系在一起, 便不细讲了.
实验细节
在看这篇论文的时候, 困扰我的就是这个径向基函数是怎么选的?
举一个作者在Language Modeling中的例子便可:
选取150个高斯径向基函数\(\mathcal{N}(t;\mu, \sigma^2)\), 其中
\(\mu\)从\([0, 1]\)中均匀采样, \(\sigma \in \{0.01, 0.05\}\).
还有用KL散度防止一般化就不讲了. 感觉本文有趣的点就是压缩这个地方, 还有对\(\Psi\)的处理.
随机推荐
- 数据库时间和 java 时间不一致解决方案
java添加 date 到数据库,时间不一致 使用 date 添加到数据库,数据库显示的时候和date时间相差 8 个小时,这是由于 mysql 上的时区的问题,这里有两个解决方案: 方案一: 设置数 ...
- MapReduce的类型与格式
MapReduce的类型 默认的MR作业 默认的mapper是Mapper类,它将输入的键和值原封不动地写到输出中 默认的partitioner是HashPartitioner,它对每条记录的键进行哈 ...
- Spark(十七)【SparkStreaming需求练习】
目录 一.环境准备 1.pom文件 2.bean 3.工具类 JDBCUtils Properties工具类 3.创建BaseApp 需求一:动态添加黑名单 需求二:广告点击量实时统计 需求三:最近一 ...
- Hive(五)【DQL数据查询】
目录 一. 基本查询 1.1 算数运算符 1.2 常用聚合函数 1.3 limit 1.4 where 1.5 比较运算符(between|in|is null) 1.6 LIKE和RLIKE 1.7 ...
- css相关,position定位详解
CSS 有两个最重要的基本属性,前端开发必须掌握:display 和 position. display属性指定网页的布局.两个重要的布局,弹性布局flex和网格布局grid. 本文介绍非常有用的po ...
- C++中union相关
前两天做阿里笔试遇到一个选择题题目大概是 #include <iostream> #include <stdlib.h> using namespace std; union ...
- 一份不错的Java就业指导
想要成为合格的Java程序员或工程师到底需要具备哪些专业技能,面试者在面试之前到底需要准备哪些东西呢? 本文陈列的这些内容既可以作为个人简历中的内容,也可以作为面试的时候跟面试官聊的东西,你可以把这些 ...
- treeTable实现排序
/* * * TreeTable 0.1 - Client-side TreeTable Viewer! * @requires jQuery v1.3 * * Dual licensed under ...
- Python基础入门(5)- 函数的定义与使用
定义函数 函数的定义 函数的分类 函数的创建方法 函数的返回return 函数的定义 将一件事情的步骤封装在一起并得到最终结果 函数名代表了这个函数要做的事情 函数体是实现函数功能的流程 函数可以帮助 ...
- Nginx中指令
Rewrite模块 1 return指令 Syntax: return code [text]; return code URL; return URL; Default: - Context: se ...