\(\mathcal{Description}\)

  link.

  给定 \(n\) 个水果,每个结点可能有甜度 \(v_i\),或不甜(\(v_i=-1\))。现在把这些水果串成一棵无根树。称一个水果“真甜”,当且仅当其本身和至少一个邻接水果是甜的。每个“真甜”水果对树的甜度产生 \(v_i\) 的贡献。求所有甜度不超过 \(maxv\) 的树。

  \(n\le40\)。

\(\mathcal{Solution}\)

  令无序地取恰好 \(i\) 个水果使其甜度和不超过 \(maxv\) 的方案数为 \(f_i\),树上恰有 \(i\) 个“真甜”果的方案数为 \(g_i\)。显然答案为 \(\sum f_ig_i\)。

\(\mathcal{Part~1}\)

  求 \(f_i\)。

  这是一个经典(我已经忘记)的 \(\text{meet in the middle}\) 问题。先取出甜水果全集,任意分成等大(或大小差 \(1\))的两部分。分别枚举两部分的子集,统计其甜度和及子集大小,并分别按甜度和为关键字升序排列,构成两个序列,令为 \(A,B\)。接下来用一个 \(\text{two-pointers}\) 的技巧。从小到大枚举 \(B\) 中的元素,注意到其甜度不减,所以可与其配对的 \(A\) 的元素范围逐渐向左减小。每次维护 \(A\) 中新的右端点,在暴力枚举在 \(A\) 中取的集合大小统计与 \(B\) 当前元素构成的方案数。(不像人话 qwq,看代码吧。)

  这部分复杂度 \(\mathcal O(2^{\frac{n}2}n)\)。

\(\mathcal{Part~2}\)

  求 \(g_i\)。

  直接算出每个 \(g_i\) 貌似有些困难。我们先算出树上有不超过 \(i\) 个“真甜”果的方案数。设共有甜果 \(m\) 个,“真甜”果 \(k\) 个。不妨令“真甜”果为 \(1,2,\dots,k\),甜而非“真甜”(就叫它们清甜 w)果为 \(k+1,k+2,\dots,m\),不甜果为 \(m+1,m+2,\dots,n\)。想象一个完全图,删除所有“甜-清甜”与“清甜-清甜”的连边,用 \(\text{Matrix-Tree}\) 求出生成树个数。可以发现,这样的一棵生成树不可能让“清甜”变成“真甜”,所以这就是不超过 \(i\) 个“真甜”果的方案数。此时,再利用此前计算出的 \(g\) 减去多出来的一些方案即可。

  这部分复杂度 \(\mathcal O(n^4)\),故总复杂度 \(\mathcal O(2^{\frac{n}2}n+n^4)\)。

\(\mathcal{Code}\)

#include <cstdio>
#include <vector>
#include <algorithm> const int MAXN = 40, MOD = 1e9 + 7;
int n, val[MAXN + 5], maxv, inv[MAXN + 5], fac[MAXN + 5], ifac[MAXN + 5];
int chose[MAXN + 5], mayswt[MAXN + 5];
std::vector<int> swt;
std::vector<std::pair<int, int> > swtsum[2]; inline int qkpow ( int a, int b, const int p = MOD ) {
int ret = 1;
for ( ; b; a = 1ll * a * a % p, b >>= 1 ) ret = 1ll * ret * ( b & 1 ? a : 1 ) % p;
return ret;
} struct MatrixTree {
int K[MAXN + 5][MAXN + 5];
inline void clear () {
for ( int i = 1; i <= n; ++ i ) {
for ( int j = 1; j <= n; ++ j ) {
K[i][j] = 0;
}
}
}
inline void add ( const int u, const int v ) {
++ K[u][u], ++ K[v][v], -- K[u][v], -- K[v][u];
if ( K[u][v] < 0 ) K[u][v] += MOD;
if ( K[v][u] < 0 ) K[v][u] += MOD;
}
inline int det () {
int ret = 1, swp = 1;
for ( int i = 1; i < n; ++ i ) {
for ( int j = i; j < n; ++ j ) {
if ( K[j][i] ) {
if ( i ^ j ) std::swap ( K[i], K[j] ), swp *= -1;
break;
}
}
if ( ! ( ret = 1ll * ret * K[i][i] % MOD ) ) return 0;
int inv = qkpow ( K[i][i], MOD - 2 );
for ( int j = i + 1; j < n; ++ j ) {
int d = 1ll * K[j][i] * inv % MOD;
for ( int k = i; k < n; ++ k ) {
K[j][k] = ( K[j][k] - 1ll * d * K[i][k] % MOD + MOD ) % MOD;
}
}
}
return ( ret * swp + MOD ) % MOD;
}
} mt; inline void init () {
inv[1] = fac[0] = fac[1] = ifac[0] = ifac[1] = 1;
for ( int i = 2; i <= n; ++ i ) {
inv[i] = 1ll * ( MOD - MOD / i ) * inv[MOD % i] % MOD;
fac[i] = 1ll * i * fac[i - 1] % MOD;
ifac[i] = 1ll * inv[i] * ifac[i - 1] % MOD;
}
} inline int comb ( const int n, const int m ) {
return n < m ? 0 : 1ll * fac[n] * ifac[m] % MOD * ifac[n - m] % MOD;
} inline void calcSwt () {
int lef = swt.size () >> 1, rig = swt.size () - lef;
for ( int s = 0; s < 1 << lef; ++ s ) {
int bit = 0, sval = 0;
for ( int i = 0; i < lef; ++ i ) {
if ( ( s >> i ) & 1 ) {
++ bit, sval += swt[i];
}
}
if ( sval <= maxv ) swtsum[0].push_back ( std::make_pair ( sval, bit ) );
}
for ( int s = 0; s < 1 << rig; ++ s ) {
int bit = 0, sval = 0;
for ( int i = 0; i < rig; ++ i ) {
if ( ( s >> i ) & 1 ) {
++ bit, sval += swt[lef + i];
}
}
if ( sval <= maxv ) swtsum[1].push_back ( std::make_pair ( sval, bit ) );
}
std::sort ( swtsum[0].begin (), swtsum[0].end () );
std::sort ( swtsum[1].begin (), swtsum[1].end () );
int cnt[45] {};
for ( int i = 0; i ^ swtsum[0].size (); ++ i ) ++ cnt[swtsum[0][i].second];
for ( int i = 0, j = int ( swtsum[0].size () ) - 1; i ^ swtsum[1].size (); ++ i ) {
for ( ; ~ j && swtsum[1][i].first + swtsum[0][j].first > maxv; -- cnt[swtsum[0][j --].second] );
for ( int k = 0; k <= lef; ++ k ) {
chose[k + swtsum[1][i].second] = ( chose[k + swtsum[1][i].second] + cnt[k] ) % MOD;
}
}
} class SweetFruits {
public:
inline int countTrees ( std::vector<int> tval, const int tmaxv ) {
n = tval.size (), init ();
for ( int i = 1; i <= n; ++ i ) val[i] = tval[i - 1];
maxv = tmaxv;
for ( int i = 1; i <= n; ++ i ) if ( ~ val[i] ) swt.push_back ( val[i] );
calcSwt ();
for ( int i = 0; i <= ( int ) swt.size (); ++ i ) {
mt.clear ();
for ( int u = 1; u <= n; ++ u ) {
for ( int v = u + 1; v <= n; ++ v ) {
if ( v <= i || ( int ) swt.size () < v ) {
mt.add ( u, v );
}
}
}
mayswt[i] = mt.det ();
for ( int j = 1; j < i - 1; ++ j ) {
mayswt[i] = ( mayswt[i] - 1ll * comb ( i, j ) * mayswt[i - j] % MOD + MOD ) % MOD;
}
if ( i ) mayswt[i] = ( mayswt[i] - mayswt[0] + MOD ) % MOD;
}
int ans = 0;
for ( int i = 0; i <= ( int ) swt.size (); ++ i ) if ( i ^ 1 ) ans = ( ans + 1ll * mayswt[i] * chose[i] ) % MOD;
return ans;
}
};

Solution -「SV 2020 Round I」「SRM 551 DIV1」「TC 12141」SweetFruits的更多相关文章

  1. Solution -「SV 2020 Round I」SA

    \(\mathcal{Description}\)   求出处 owo.   给定一个长度为 \(n\),仅包含小写字母的字符串 \(s\),问是否存在长度为 \(n\),仅包含小写字母的字符串 \( ...

  2. 「LibreOJ NOI Round #2」不等关系

    「LibreOJ NOI Round #2」不等关系 解题思路 令 \(F(k)\) 为恰好有 \(k\) 个大于号不满足的答案,\(G(k)\) 表示钦点了 \(k\) 个大于号不满足,剩下随便填的 ...

  3. LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿

    二次联通门 : LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿 /* LibreOJ #507. 「LibreOJ NOI Round #1」接竹竿 dp 记录一下前驱 ...

  4. 「NOIP 2020」微信步数(计数)

    「NOIP 2020」微信步数(Luogu P7116) 题意: 有一个 \(k\) 维场地,第 \(i\) 维宽为 \(w_i\),即第 \(i\) 维的合法坐标为 \(1, 2, \cdots, ...

  5. 转:Android开源项目推荐之「网络请求哪家强」 Android开源项目推荐之「网络请求哪家强」

    转载自https://zhuanlan.zhihu.com/p/21879931 1. 原则 本篇说的网络请求专指 http 请求,在选择一个框架之前,我个人有个习惯,就是我喜欢选择专注的库,其实在软 ...

  6. [Q&A]VS 2012 MVC4专案与网站的差异?「ASP.NET组态」的Login账号出现在「新旧两组」会员数据库里面?

    原文出處  http://www.dotblogs.com.tw/mis2000lab/archive/2013/08/30/mvc4_vs2012_login_member_db.aspx [Q&a ...

  7. Solution -「ZJOI 2020」「洛谷 P6631」序列

    \(\mathcal{Description}\)   Link.   给定一个长为 \(n\) 的非负整数序列 \(\lang a_n\rang\),你可以进行如下操作: 取 \([l,r]\),将 ...

  8. Solution -「JOISC 2020」「UOJ #509」迷路的猫

    \(\mathcal{Decription}\)   Link.   这是一道通信题.   给定一个 \(n\) 个点 \(m\) 条边的连通无向图与两个限制 \(A,B\).   程序 Anthon ...

  9. Solution -「NOI 2020」「洛谷 P6776」超现实树

    \(\mathcal{Description}\)   Link.   对于非空二叉树 \(T\),定义 \(\operatorname{grow}(T)\) 为所有能通过若干次"替换 \( ...

随机推荐

  1. js- float类型相减 出现无限小数的问题

    6.3 -1.1 是不是应该等于5.2? 但是js 会导致得出 5.19999999999的结果 怎么办?可以先先乘100 后相减,然是用方法 舍入为最接近的整数,然后再除于100, Math.rou ...

  2. BIO、NIO、AIO --- 个人理解

    1.前言 什么是 BIO.NIO.AIO  ,不难看出,都是共同的字符IO , IO的意思是input output  ,即输入输出 , 那么 B . N .A 分别指不同的io模型 ,而io又分为 ...

  3. Word合并多文档

    图片如果损坏,点击链接: https://www.toutiao.com/i6489785099528176142/ 很多时候,我们需要将两个或者多个文档的内容,放到一起,而最直接的办法就是将多个文档 ...

  4. Servlet中分发器和重定向两兄弟

    注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6513702111698485767/ 弄清这个两兄弟,我们还是从练习中去理解 先创建一个数据提交页面,注意路径 编 ...

  5. 常用Cron表达式范例

    描述 表达式 每隔5秒执行一次 */5 * * * * ? 每隔1分钟执行一次 0 */1 * * * ? 每天23点执行一次 0 0 23 * * ? 每天凌晨1点执行一次 0 0 1 * * ? ...

  6. react中引入图片路劲正确但是页面上不显示或者打包后不能正常显示的问题

    一.react中图片引入方式 以前我们用img引入图片只需要如下即可,在react中这样写会报错: <img src="../assets/zzsc1.png" /> ...

  7. 论文解读二代GCN《Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering》

    Paper Information Title:Convolutional Neural Networks on Graphs with Fast Localized Spectral Filteri ...

  8. JavaScript DOM 基础操作

    JavaScript DOM 基础操作 一.获取元素的六方式 document.getElementById('id名称') //根据id名称获取 document.getElementsByclas ...

  9. [STM32F10x] 从零开始创建一个基于标准库的工程

    硬件:STM32F103C8T6 平台:MDK-AMR V4.70 1.创建一个Keil uVision 的工程 要点:相同类型的源文件放在一起以便于管理       2.添加标准库源文件 3.添加几 ...

  10. .NET SourceGenerators 根据 HTTPAPI 接口自动生成实现类

    目录 摘要 元数据分析 使用 Source generators 实现 使用 Source generators 实现程序集分析 使用方法 SourceCode && Nuget pa ...