\(\mathcal{Description}\)

  Link.

  定义一个运算结点 \(u\) 有两个属性:当前容量 \(x_u\)、最大容量 \(V_u\)。提供以下单元操作:

  1. I 读入一个整数 \(x\),令新结点 \(u=(x,x)\)。

  2. F u 装满 \(u\) 结点,即令 \(x_u=V_u\)。

  3. E u 清空 \(u\) 结点,即令 \(x_u=0\)。

  4. C s 令新结点 \(u=(0,s)\)。

  5. M u 令新结点 \(v=(0,x_u)\)。

  6. T u v 不断令 \(x_u\leftarrow x_u-1,x_v\leftarrow x_v-1\) 直到 \(x_u=0\) 或 \(x_v=V_v\)。

  构造不超过 \(10^4\) 次操作的一个运算方法,输入 \(a,b\),输出 \(ab\bmod 2^{18}\)。

  \(0\le a,b\le 10^5\)。

\(\mathcal{Solution}\)

  貌似是瓶子国的某个点?反正很离谱就是了。

  首先观察操作,我们只有一个二元运算 \(T(u,v)\),必然只能用它实现逻辑模块。

  再从问题入手,不难想到可以龟速乘计算 \(ab\),过程中若值 \(\ge 2^{18}\),则减去 \(2^{18}\)。那么我们至少需要实现这些模块:

  • 加法器:输入结点 \(u,v\),输出 \(w\),满足 \(x_w=x_u+x_v\)。

  • 逻辑减法器:输入结点 \(u,v\),输出 \(w\),若 \(x_u\ge x_v\),\(x_w=x_u-x_v\);否则 \(x_w=x_u\)。

  加法器比较方便:新建一个大容量点,把两个加数复制一份倒进去就好。先实现一个复制当前容量器:

inline int copyNum( const int u ) {
printf( "M %d\n", u ), ++node;
printf( "F %d\n", node );
return node;
}

  再实现加法器:

inline int add( const int u, const int v ) {
printf( "C 1000000000\n" ); int res = ++node;
printf( "T %d %d\n", copyNum( u ), res );
printf( "T %d %d\n", copyNum( v ), res );
return res;
}

  逻辑减法?先要判断大小关系。而 \(T(u,v)\) 之后 \(x'_u=\max\{x_u-x_v,0\}\),我们只需要判断一个结点的当前容量是否为 \(0\)。好消息是,我们能够实现逻辑非器:

inline int logicNot( const int u ) {
printf( "M %d\n", u ), ++node;
puts( "C 1" ), ++node;
printf( "F %d\n", node );
printf( "T %d %d\n", node, node - 1 );
return node;
}

  内部逻辑比较易懂就不讲啦。在此基础上,实现普通减法器和逻辑减法器:

inline int sub( const int u, const int v ) {
printf( "M %d\n", v ); int tmp = ++node;
printf( "T %d %d\n", copyNum( u ), tmp );
return node;
} inline PII logicSub( int u, int v ) {
int f = logicNot( sub( u = add( u, 1 ), v ) );
rep ( i, 1, 18 ) f = add( f, f );
printf( "M %d\n", f ), f = ++node;
printf( "T %d %d\n", v = copyNum( v ), f );
return { u = sub( sub( u, v ), 1 ), f };
}

  逻辑减法器返回的 first 即减法结果,second 用于求解时重复利用。

  底层方法实现之后,剩下的工作就简单了:输入 \(a,b\),计算 \(2a,4a,\cdots,2^{16}a\),枚举 \(b\) 是否大于等于 \(2^{16}\dots2^0\),若是,则减去,答案加上对应的权。都能用以逻辑非为基础的模块实现。

  操作次数复杂度为 \(\mathcal O(\log^2 V)\)(倍增以及内部的逻辑减法),我实现的常数较大,不过封装成模块很易懂就是了。(

\(\mathcal{Code}\)

/*+Rainybunny+*/

#include <bits/stdc++.h>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) typedef std::pair<int, int> PII;
#define fi first
#define se second int node, mod; namespace StandardModuleLibrary { inline int logicNot( const int u ) {
printf( "M %d\n", u ), ++node;
puts( "C 1" ), ++node;
printf( "F %d\n", node );
printf( "T %d %d\n", node, node - 1 );
return node;
} inline int copyNum( const int u ) {
printf( "M %d\n", u ), ++node;
printf( "F %d\n", node );
return node;
} inline int add( const int u, const int v ) {
printf( "C 1000000000\n" ); int res = ++node;
printf( "T %d %d\n", copyNum( u ), res );
printf( "T %d %d\n", copyNum( v ), res );
return res;
} inline int sub( const int u, const int v ) {
printf( "M %d\n", v ); int tmp = ++node;
printf( "T %d %d\n", copyNum( u ), tmp );
return node;
} inline PII logicSub( int u, int v ) {
int f = logicNot( sub( u = add( u, 1 ), v ) );
rep ( i, 1, 18 ) f = add( f, f );
printf( "M %d\n", f ), f = ++node;
printf( "T %d %d\n", v = copyNum( v ), f );
return { u = sub( sub( u, v ), 1 ), f };
} } using namespace StandardModuleLibrary; int main() {
freopen( "liver.out", "w", stdout ); int x, y;
printf( "C 1\nF 1\n" ), node = 1; // element 1.
printf( "C 262144\nF 2\n" ), mod = node = 2; // module.
puts( "I" ), x = ++node;
puts( "I" ), y = ++node; int buc[30] = { x }, pwr[30] = {};
int ans = ++node; puts( "C 1000000000" ); pwr[0] = ++node, printf( "C 1\nF %d\n", node );
rep ( i, 1, 16 ) {
pwr[i] = ++node, printf( "C %d\nF %d\n", 1 << i, node );
PII shit( logicSub( add( buc[i - 1], buc[i - 1] ), mod ) );
buc[i] = shit.fi;
} per ( i, 16, 0 ) {
PII r( logicSub( y, pwr[i] ) );
int x = r.se;
rep ( j, 1, 18 - i ) x = add( x, x );
printf( "M %d\n", x ), x = ++node;
printf( "T %d %d\n", buc[i], x ), y = r.fi;
ans = logicSub( add( ans, buc[i] ), mod ).fi;
} printf( "P %d\n", ans );
return 0;
}

Solution -「OurOJ 46544」漏斗计算的更多相关文章

  1. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  2. Solution -「CTS 2019」「洛谷 P5404」氪金手游

    \(\mathcal{Description}\)   Link.   有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...

  3. Solution -「BZOJ 3812」主旋律

    \(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...

  4. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  5. Solution -「简单 DP」zxy 讲课记实

    魔法题位面级乱杀. 「JOISC 2020 Day4」治疗计划 因为是不太聪明的 Joker,我就从头开始理思路了.中途也会说一些和 DP 算法本身有关的杂谈,给自己的冗长题解找借口. 首先,治疗方案 ...

  6. Solution -「WC 2022」秃子酋长

    \(\mathscr{Description}\)   Link. (It's empty temporarily.)   给定排列 \(\{a_n\}\),\(q\) 次询问,每次给出 \([l,r ...

  7. Solution -「CEOI 2017」「洛谷 P4654」Mousetrap

    \(\mathscr{Description}\)   Link.   在一个含 \(n\) 个结点的树形迷宫中,迷宫管理者菈米莉丝和一只老鼠博弈.老鼠初始时在结点 \(y\),有且仅有结点 \(x\ ...

  8. Solution -「CEOI 2006」「洛谷 P5974」ANTENNA

    \(\mathcal{Description}\)   Link.   给定平面上 \(n\) 个点,求最小的能覆盖其中至少 \(m\) 个点的圆半径及一个可能的圆心.   \(n\le500\),坐 ...

  9. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

随机推荐

  1. react中虚拟DOM

    简单来说虚拟DOM就是一个js对象,相对于真实dom来做比较更节约性能,虚拟DOM执行过程如下

  2. Pandas系列(十七)-EDA(pandas-profiling)

    对于探索性数据分析来说,做数据分析前需要先看一下数据的总体概况,pandas_profiling工具可以快速预览数据. 安装 pip install pandas-profiling 使用 impor ...

  3. vuex获取数据

    cmd窗口vue add vuex后出现store文件夹,在里面的index.js里面设置state属性,可以在视图页面home.vue文件中获取. 方法1: //在项目当中引入router以后 就多 ...

  4. Sentry 开发者贡献指南 - 浏览器 SDK 集成测试

    Sentry 的浏览器 SDK 的集成测试在内部使用 Playwright.这些测试在 Chromium.Firefox 和 Webkit 的最新稳定版本上运行. https://playwright ...

  5. Vscode不能连接应用商店

    删除这两个文件即可: 1.C:\Users\Administrator\.vscode 2.C:\Users\Administrator\AppData\Roaming\Code

  6. gin框架中项目的初始化

    核心知识点 json配置文件解析成结构体 将路由对应的接口抽离到单独的文件中,main函数中直接注册路由即可 项目目录图 项目代码 app.json代码 { "app_name": ...

  7. golang中使用zap日志库

    1. 快速使用 package main import ( "go.uber.org/zap" "time" ) func main() { // 1. sug ...

  8. 守护石谈学习Java之路

    ​这次在CSDN Blink发表了几篇关于Java编程学习的小作文,讲述了Java工程师的成长路线.Java学习的技能树和入门工作要关注的核心问题,我继续做一次文章的整合与延展,以文章的形式发表出来, ...

  9. shell 的here document 用法 (cat << EOF) (转)

    什么是Here Document Here Document 是在Linux Shell 中的一种特殊的重定向方式,它的基本的形式如下 cmd << delimiter Here Docu ...

  10. JAVA boolean 类型

    boolean 类型用来存储布尔值,在java中布尔值只有2个,true和false. boolean flag=true; flag=false;