\(\mathcal{Description}\)

  Link.

  定义一个运算结点 \(u\) 有两个属性:当前容量 \(x_u\)、最大容量 \(V_u\)。提供以下单元操作:

  1. I 读入一个整数 \(x\),令新结点 \(u=(x,x)\)。

  2. F u 装满 \(u\) 结点,即令 \(x_u=V_u\)。

  3. E u 清空 \(u\) 结点,即令 \(x_u=0\)。

  4. C s 令新结点 \(u=(0,s)\)。

  5. M u 令新结点 \(v=(0,x_u)\)。

  6. T u v 不断令 \(x_u\leftarrow x_u-1,x_v\leftarrow x_v-1\) 直到 \(x_u=0\) 或 \(x_v=V_v\)。

  构造不超过 \(10^4\) 次操作的一个运算方法,输入 \(a,b\),输出 \(ab\bmod 2^{18}\)。

  \(0\le a,b\le 10^5\)。

\(\mathcal{Solution}\)

  貌似是瓶子国的某个点?反正很离谱就是了。

  首先观察操作,我们只有一个二元运算 \(T(u,v)\),必然只能用它实现逻辑模块。

  再从问题入手,不难想到可以龟速乘计算 \(ab\),过程中若值 \(\ge 2^{18}\),则减去 \(2^{18}\)。那么我们至少需要实现这些模块:

  • 加法器:输入结点 \(u,v\),输出 \(w\),满足 \(x_w=x_u+x_v\)。

  • 逻辑减法器:输入结点 \(u,v\),输出 \(w\),若 \(x_u\ge x_v\),\(x_w=x_u-x_v\);否则 \(x_w=x_u\)。

  加法器比较方便:新建一个大容量点,把两个加数复制一份倒进去就好。先实现一个复制当前容量器:

inline int copyNum( const int u ) {
printf( "M %d\n", u ), ++node;
printf( "F %d\n", node );
return node;
}

  再实现加法器:

inline int add( const int u, const int v ) {
printf( "C 1000000000\n" ); int res = ++node;
printf( "T %d %d\n", copyNum( u ), res );
printf( "T %d %d\n", copyNum( v ), res );
return res;
}

  逻辑减法?先要判断大小关系。而 \(T(u,v)\) 之后 \(x'_u=\max\{x_u-x_v,0\}\),我们只需要判断一个结点的当前容量是否为 \(0\)。好消息是,我们能够实现逻辑非器:

inline int logicNot( const int u ) {
printf( "M %d\n", u ), ++node;
puts( "C 1" ), ++node;
printf( "F %d\n", node );
printf( "T %d %d\n", node, node - 1 );
return node;
}

  内部逻辑比较易懂就不讲啦。在此基础上,实现普通减法器和逻辑减法器:

inline int sub( const int u, const int v ) {
printf( "M %d\n", v ); int tmp = ++node;
printf( "T %d %d\n", copyNum( u ), tmp );
return node;
} inline PII logicSub( int u, int v ) {
int f = logicNot( sub( u = add( u, 1 ), v ) );
rep ( i, 1, 18 ) f = add( f, f );
printf( "M %d\n", f ), f = ++node;
printf( "T %d %d\n", v = copyNum( v ), f );
return { u = sub( sub( u, v ), 1 ), f };
}

  逻辑减法器返回的 first 即减法结果,second 用于求解时重复利用。

  底层方法实现之后,剩下的工作就简单了:输入 \(a,b\),计算 \(2a,4a,\cdots,2^{16}a\),枚举 \(b\) 是否大于等于 \(2^{16}\dots2^0\),若是,则减去,答案加上对应的权。都能用以逻辑非为基础的模块实现。

  操作次数复杂度为 \(\mathcal O(\log^2 V)\)(倍增以及内部的逻辑减法),我实现的常数较大,不过封装成模块很易懂就是了。(

\(\mathcal{Code}\)

/*+Rainybunny+*/

#include <bits/stdc++.h>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) typedef std::pair<int, int> PII;
#define fi first
#define se second int node, mod; namespace StandardModuleLibrary { inline int logicNot( const int u ) {
printf( "M %d\n", u ), ++node;
puts( "C 1" ), ++node;
printf( "F %d\n", node );
printf( "T %d %d\n", node, node - 1 );
return node;
} inline int copyNum( const int u ) {
printf( "M %d\n", u ), ++node;
printf( "F %d\n", node );
return node;
} inline int add( const int u, const int v ) {
printf( "C 1000000000\n" ); int res = ++node;
printf( "T %d %d\n", copyNum( u ), res );
printf( "T %d %d\n", copyNum( v ), res );
return res;
} inline int sub( const int u, const int v ) {
printf( "M %d\n", v ); int tmp = ++node;
printf( "T %d %d\n", copyNum( u ), tmp );
return node;
} inline PII logicSub( int u, int v ) {
int f = logicNot( sub( u = add( u, 1 ), v ) );
rep ( i, 1, 18 ) f = add( f, f );
printf( "M %d\n", f ), f = ++node;
printf( "T %d %d\n", v = copyNum( v ), f );
return { u = sub( sub( u, v ), 1 ), f };
} } using namespace StandardModuleLibrary; int main() {
freopen( "liver.out", "w", stdout ); int x, y;
printf( "C 1\nF 1\n" ), node = 1; // element 1.
printf( "C 262144\nF 2\n" ), mod = node = 2; // module.
puts( "I" ), x = ++node;
puts( "I" ), y = ++node; int buc[30] = { x }, pwr[30] = {};
int ans = ++node; puts( "C 1000000000" ); pwr[0] = ++node, printf( "C 1\nF %d\n", node );
rep ( i, 1, 16 ) {
pwr[i] = ++node, printf( "C %d\nF %d\n", 1 << i, node );
PII shit( logicSub( add( buc[i - 1], buc[i - 1] ), mod ) );
buc[i] = shit.fi;
} per ( i, 16, 0 ) {
PII r( logicSub( y, pwr[i] ) );
int x = r.se;
rep ( j, 1, 18 - i ) x = add( x, x );
printf( "M %d\n", x ), x = ++node;
printf( "T %d %d\n", buc[i], x ), y = r.fi;
ans = logicSub( add( ans, buc[i] ), mod ).fi;
} printf( "P %d\n", ans );
return 0;
}

Solution -「OurOJ 46544」漏斗计算的更多相关文章

  1. Solution -「ARC 104E」Random LIS

    \(\mathcal{Description}\)   Link.   给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...

  2. Solution -「CTS 2019」「洛谷 P5404」氪金手游

    \(\mathcal{Description}\)   Link.   有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...

  3. Solution -「BZOJ 3812」主旋律

    \(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...

  4. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  5. Solution -「简单 DP」zxy 讲课记实

    魔法题位面级乱杀. 「JOISC 2020 Day4」治疗计划 因为是不太聪明的 Joker,我就从头开始理思路了.中途也会说一些和 DP 算法本身有关的杂谈,给自己的冗长题解找借口. 首先,治疗方案 ...

  6. Solution -「WC 2022」秃子酋长

    \(\mathscr{Description}\)   Link. (It's empty temporarily.)   给定排列 \(\{a_n\}\),\(q\) 次询问,每次给出 \([l,r ...

  7. Solution -「CEOI 2017」「洛谷 P4654」Mousetrap

    \(\mathscr{Description}\)   Link.   在一个含 \(n\) 个结点的树形迷宫中,迷宫管理者菈米莉丝和一只老鼠博弈.老鼠初始时在结点 \(y\),有且仅有结点 \(x\ ...

  8. Solution -「CEOI 2006」「洛谷 P5974」ANTENNA

    \(\mathcal{Description}\)   Link.   给定平面上 \(n\) 个点,求最小的能覆盖其中至少 \(m\) 个点的圆半径及一个可能的圆心.   \(n\le500\),坐 ...

  9. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

随机推荐

  1. Linux内核模块学习

    注:本文是<Linux设备驱动开发详解:基于最新的Linux 4.0内核 by 宋宝华 >一书学习的笔记,大部分内容为书籍中的内容. 书籍可直接在微信读书中查看:Linux设备驱动开发详解 ...

  2. Python入门(上)

    Python入门(上) Python入门(上) 简介 Python 基础语法 行与缩进 注释 运算符 标准数据类型 变量 编程流程 顺序(略) 分支 if 循环 for while break 和 c ...

  3. 大数据安全与RANGER学习和使用

    概述 再说ranger之前需要明白一下大数据的安全体系的整体介绍,安全体系其实也就是权限可控,先说说权限:权限管理的目标,绝对不是简单的在技术层面建立起用户,密码和权限点的映射关系这么简单的事,更重要 ...

  4. SSTI(以Twig模板引擎为例)

    一.模板注入与常见Web注入 就注入类型的漏洞来说,常见 Web 注入有:SQL 注入,XSS 注入,XPATH 注入,XML 注入,代码注入,命令注入等等.注入漏洞的实质是服务端接受了用户的输入,未 ...

  5. 【Java】GUI编程

    GUI编程 前言 某koukou老师的任务罢了,好在狂神老师居然有GUI的课,只能说是有救星了. [狂神说Java]GUI编程入门到游戏实战 最好笑的是,老师要求掌握的居然是14年的知识,就连狂神在上 ...

  6. Cesium中级教程4 - 空间数据可视化(二)

    Cesium中文网:http://cesiumcn.org/ | 国内快速访问:http://cesium.coinidea.com/ Viewer中的Entity功能 让我们看看Viewer为操作e ...

  7. Redisson 实现分布式锁原理分析

    Redisson 实现分布式锁原理分析   写在前面 在了解分布式锁具体实现方案之前,我们应该先思考一下使用分布式锁必须要考虑的一些问题.​ 互斥性:在任意时刻,只能有一个进程持有锁. 防死锁:即使有 ...

  8. java匿名内部类-细节

    1 package face_09; 2 3 public class InnerClassDemo50 { 4 static class Inner{ 5 6 } 7 public static v ...

  9. 集合框架-工具类-Arrays方法介绍

    1 package cn.itcast.p3.toolclass.arrays.demo; 2 3 import java.util.Arrays; 4 5 public class ArraysDe ...

  10. java-异常-异常处理原则

    1 异常处理的原则: 2 * 1,函数内部如果抛出需要检测的异常,那么函数上必须要声明. 3 * 否则必须在函数内用trycatch捕捉,否则编译失败. 4 * 5 * 2,如果调用到了声明异常的函数 ...