题目大意:

给定一个长度为\(n\)的序列

让你找一个\(x\),使得\(ans\)尽可能小

其中$$ans=\sum_{i=1}^{n}\lfloor\frac{a_i}{x}\rfloor + \sum_{i=1}^{n} a_i\mod x $$

我们看到这个式子,可以考虑化简一下$$ans=\sum_{i=1}^{n}\lfloor\frac{a_i}{x}\rfloor + \sum_{i=1}^{n} a_i-\lfloor\frac{a_i}{x}\rfloor \times x $$

然后再合并一下下

\[ans=\sum_{i=1}^{n} a_i + \sum_{i=1}^{n} \lfloor\frac{a_i}{x}\rfloor \times (1-x)
\]

然后我们就可以枚举\(x\)和枚举\(\lfloor\frac{a_i}{x}\rfloor\)

虽然我也不知道为什么复杂度是对的

不过貌似就是过了哎

记得用桶维护一下\(a_i\)的值,然后暴力算即可

直接上代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath> using namespace std; inline long long read()
{
long long x=0,f=1;char ch=getchar();
while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
} const int maxn = 2e6+1e2; long long sum[maxn];
int n,m;
long long a[maxn];
long long max1;
long long ans=1e18;
long long tmp; int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++) a[i]=read(),sum[a[i]]++,max1=max(max1,a[i]),tmp=tmp+a[i];
for (int i=1;i<=max1;i++) sum[i]+=sum[i-1];
for (long long x=1;x<=max1;x++)
{
long long cnt=0;
for (long long i=0;i<=max1/x;i++)
{
long long l = x*i;
long long r = min(x*(i+1)-1,max1);
cnt+=(1-x)*(sum[r]-sum[l-1])*i;
}
ans=min(ans,cnt);
}
ans=tmp+ans;
cout<<ans;
return 0;
}

uoj21 缩进优化(整除分块,乱搞)的更多相关文章

  1. HDU 4638 Group 【树状数组,分块乱搞(莫队算法?)】

    根据题目意思,很容易得出,一个区间里面连续的段数即为最少的group数. 题解上面给的是用树状数组维护的. 询问一个区间的时候,可以一个一个的向里面添加,只需要判断a[i]-1 和 a[i]+1是否已 ...

  2. BZOJ 4216 Pig 分块乱搞

    题意:id=4216">链接 方法:分块以节约空间. 解析: 这题坑的地方就是他仅仅有3M的内存限制,假设我们开longlong前缀和是必死的. 所以考虑缩小这个long long数组 ...

  3. [luoguP2325] [SCOI2005]王室联邦(树分块乱搞)

    传送门 想了半小时,没什么思路.. 看了题解,是个叫做树分块的奇奇怪怪的操作.. 题解 树分块的研究 #include <cstdio> #include <cstring> ...

  4. 洛谷 P6788 - 「EZEC-3」四月樱花(整除分块)

    题面传送门 题意: 求 \[\prod\limits_{x=1}^n\prod\limits_{y|x}\frac{y^{d(y)}}{\prod\limits_{z|y}z+1} \pmod{p} ...

  5. 51Nod 1225 余数之和 [整除分块]

    1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...

  6. LightOJ 1098(均值不等式,整除分块玄学优化)

    We all know that any integer number n is divisible by 1 and n. That is why these two numbers are not ...

  7. 【51nod1443】路径和树(堆优化dijkstra乱搞)

    点此看题面 大致题意:给你一个无向联通图,要求你求出这张图中从u开始的权值和最小的最短路径树的权值之和. 什么是最短路径树? 从\(u\)开始到任意点的最短路径与在原图中相比不变. 题解 既然要求最短 ...

  8. 学渣乱搞系列之dp斜率优化

    学渣乱搞系列之dp斜率优化 By 狂徒归来 貌似dp的斜率优化一直很难搞啊,尤其是像我这种数学很挫的学渣,压根不懂什么凸包,什么上凸下凸的,哎...说多了都是泪,跟wdd讨论了下,得出一些结论.本文很 ...

  9. cdoj Dividing Numbers 乱搞记忆化搜索

    //真tm是乱搞 但是(乱搞的)思想很重要 解:大概就是记忆化搜索,但是原数据范围太大,不可能记下所有的情况的答案,于是我们就在记下小范围内的答案,当dfs落入这个记忆范围后,就不进一步搜索,直接返回 ...

随机推荐

  1. JAVAWEB开发批量删除,SSM的几种情况

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. SpringSecurity入门

    基础 spring security的底层就是一个过滤器链 ExceptionTranslationFilter是一个异常过滤器,用来处理认证授权过程中的异常 UseranmePasswordAuth ...

  3. js函数和封装

    $就是jquery对象,$()就是jQuery(),在里面可以传参数,作用就是获取元素 js对象与jQuery对象的区别:jQuery对象是一个数组,jQuery对象转为js对象:[0] 取第一个即可 ...

  4. Panel添加边框颜色和边框粗细调整

    Panel控件添加边框颜色 C# WinForm窗体控件Panel修改边框颜色以及边框宽度方法 - JiYF - 博客园 (cnblogs.com) 1.新建一个用户控件的项目,如下: 2.添加一个P ...

  5. 如何在RHEL7或CentOS 7系统下修改网卡名称(亲测有效~!)

    亲测有效的更改RHEL7或CentOS 7的网卡名称的方法, 按照以下4步来操作就可以实现! Step 1 :网卡配置文件名称重命名为eth0[root@localhost ~]# ifconfige ...

  6. Ubantu启动失败,提示“Started GNOME Display Manager”之后起不来了

    我是在搭建DPDK环境时,为了尝试下多网卡多列配置,将虚拟机的网卡类型由e1000改成了vxnet3类型.之后修改了下内存大小和CPU核数.然后启动ubantu虚拟机,结果无法成功启动,显示结果如下: ...

  7. Docker入门之image篇

    基本概念 Image 镜像:只读模板 Container 容器:从镜像创建的运行实例 Repository 仓库:集中存放镜像文件的场所.分为公开仓库(Public)和私有仓库(Private)两种形 ...

  8. 基于Ubuntu18.04一站式部署(python-mysql-redis-nginx)

    基于Ubuntu18.04一站式部署 Python3.6.8的安装 1. 安装依赖 ~$ sudo apt install openssl* zlib* 2. 安装python3.6.8(个人建议从官 ...

  9. CSS002. 字体穿透蒙层(用img设置字体的color)

    之前在逛Apple Store时看到了下面的UI: 交互图标非常圆滑上手也很舒服,虽然背景底色本就是白底,但是只依赖css能不能使  "+" 穿透背景看到底色 ? 大致思路如下: ...

  10. java中链表和数组的区别?

    综述:数组是线性结构,可以直接索引,即要去第i个元素,a[i]即可.链表也是线性结构,要取第i个元素,只需用指针往后遍历i次就可.貌似链表比数组还要麻烦些,而且效率低些. 想到这些相同处中的一些细微的 ...