FFT模板(多项式乘法)

标签: FFT


扯淡

一晚上都用来捣鼓这个东西了......

这里贴一位神犇的博客,我认为讲的比较清楚了。(刚好适合我这种复数都没学的)

http://blog.csdn.net/leo_h1104/article/details/51615710

题解

不写点什么也不好,我就简单的说一下吧。

我们首先得知道DFT(离散傅里叶变换)和IDFT(逆离散傅里叶变换)。

一个多项式有很两种表示方法:

法一:\(f(x)=\sum_{i=0}^n A_i*x^i\)

法二:图像上的任(n+1)个点,如\(f(x)=x+1\)就可以用(0,1),(1,2),(2,3)来表示。

法二其实是很适合两个函数的相乘,只需要对应横坐标点的纵坐标相乘。

DFT其实就是将表示法 法一转换成法二,IDFT则相反。

假如DFT使用的点坐标基于实数,那么复杂度为\(O(n^2)\),相比较与基于复数的FFT,效率十分底下。

FFT就使用了单位根的\(0~n-1\)次方作为点的横坐标(这里n需要补成2的次幂),再利用单位根的某些性质,把规模减小一半。可以实现\(O(nlogn)\)的计算。

Code

#include<complex>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<queue>
#include<stack>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define REP(i,a,b) for(int i=(a),_end_=(b);i<=_end_;i++)
#define DREP(i,a,b) for(int i=(a),_end_=(b);i>=_end_;i--)
#define EREP(i,a) for(int i=start[(a)];i;i=e[i].next)
inline int read()
{
int sum=0,p=1;char ch=getchar();
while(!(('0'<=ch && ch<='9') || ch=='-'))ch=getchar();
if(ch=='-')p=-1,ch=getchar();
while('0'<=ch && ch<='9')sum=sum*10+ch-48,ch=getchar();
return sum*p;
} const int maxn=3e6+20; int n,m,l,rev[maxn];
complex <double> a[maxn],b[maxn]; void init()
{
n=read();m=read();
REP(i,0,n)a[i]=read();
REP(i,0,m)b[i]=read();
m+=n;
for(n=1;n<=m;n<<=1)l++;
REP(i,0,n-1)rev[i]=(rev[i>>1]>>1) | ((i&1)<<(l-1));
} const double Pi=acos(-1); void FFT(complex <double> *p,int opt)
{
REP(i,0,n-1)if(i<rev[i])swap(p[i],p[rev[i]]);
for(int i=1;i<n;i<<=1)
{
complex <double> W(cos(Pi/i),opt*sin(Pi/i));
for(int P=i<<1,j=0;j<n;j+=P)
{
complex <double> w(1,0);
for(int k=j;k<i+j;k++,w*=W)
{
complex <double> x=p[k],y=w*p[k+i];
p[k]=x+y;
p[k+i]=x-y;
}
}
}
if(opt==-1)REP(i,0,n)p[i]/=n;
} void doing()
{
FFT(a,1);
FFT(b,1);
REP(i,0,n)a[i]=a[i]*b[i];
FFT(a,-1);
REP(i,0,m)printf("%d ",(int)(a[i].real()+0.5));
} int main()
{
freopen("FFT.in","r",stdin);
freopen("FFT.out","w",stdout);
init();
doing();
return 0;
}

FFT模板(多项式乘法)的更多相关文章

  1. 洛谷.3803.[模板]多项式乘法(FFT)

    题目链接:洛谷.LOJ. FFT相关:快速傅里叶变换(FFT)详解.FFT总结.从多项式乘法到快速傅里叶变换. 5.4 又看了一遍,这个也不错. 2019.3.7 叕看了一遍,推荐这个. #inclu ...

  2. [模板] 多项式: 乘法/求逆/分治fft/微积分/ln/exp/幂

    多项式 代码 const int nsz=(int)4e5+50; const ll nmod=998244353,g=3,ginv=332748118ll; //basic math ll qp(l ...

  3. P3803 [模板] 多项式乘法 (FFT)

    Rt 注意len要为2的幂 #include <bits/stdc++.h> using namespace std; const double PI = acos(-1.0); inli ...

  4. 洛谷.3803.[模板]多项式乘法(NTT)

    题目链接:洛谷.LOJ. 为什么和那些差那么多啊.. 在这里记一下原根 Definition 阶 若\(a,p\)互质,且\(p>1\),我们称使\(a^n\equiv 1\ (mod\ p)\ ...

  5. FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)

    前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...

  6. 洛谷P3803 【模板】多项式乘法(FFT)

    P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: ...

  7. 洛谷 P3803 【模板】多项式乘法(FFT)

    题目链接:P3803 [模板]多项式乘法(FFT) 题意 给定一个 \(n\) 次多项式 \(F(x)\) 和一个 \(m\) 次多项式 \(G(x)\),求 \(F(x)\) 和 \(G(x)\) ...

  8. 【luogu P3803】【模板】多项式乘法(FFT)

    [模板]多项式乘法(FFT) 题目链接:luogu P3803 题目大意 给你两个多项式,要你求这两个多项式乘起来得到的多项式.(卷积) 思路 系数表示法 就是我们一般来表示一个多项式的方法: \(A ...

  9. 【总结】对FFT的理解 / 【洛谷 P3803】 【模板】多项式乘法(FFT)

    题目链接 \(\Huge\text{无图,慎入}\) \(FFT\)即快速傅里叶变换,用于加速多项式乘法. 如果暴力做卷积的话就是一个多项式的每个单项式去乘另一个多项式然后加起来,时间复杂度为\(O( ...

随机推荐

  1. 邓_Excal

    --------------------------------------------------------------------- 快速输入固定文字 有一些固定的词组,输入 1 个.2 个,貌 ...

  2. android 基础03 -- Intent

    Android 中的 Intent 是将要执行的操作的一种抽象的描述,是一个用于Android 各个组件之间传递消息的对象. Intent 的基本用法 Intent 基本的使用方法主要有三种: 启动一 ...

  3. Python 魔法方法详解

    据说,Python 的对象天生拥有一些神奇的方法,它们总被双下划线所包围,他们是面向对象的 Python 的一切. 他们是可以给你的类增加魔力的特殊方法,如果你的对象实现(重载)了这些方法中的某一个, ...

  4. IIS命令行管理工具使用

    AppCmd.exe工具所在目录 C:\windows\sytstem32\inetsrv\目录下 一条命令批量添加应用程序 c:\Windows\System32\inetsrv>for /d ...

  5. scrapy_移除内容中html标签

    如何移除所获取内容中多余的html标签? 通过w3lib模块和re模块 #!/usr/bin/python3 # -*- coding: UTF-8 -*- __author__ = 'beimenc ...

  6. python_缩进_格式化代码

    pycharm如何格式化代码? ctrl + alt + l pycharm如何缩进代码? tab  向右缩进4格 shift + tab 向左缩进4格

  7. ORACLE SQL脚本能否修改字段名称?

    在看到标题时,你先想想:在ORACLE中能否修改一个表的某个字段名呢?如果能的话,你是否还记得SQL脚本如何写的呢,呵呵,写这个的目的是因为在论坛上看见许多信誓旦旦的说ORACLE中不能修改字段名称, ...

  8. linux(centos)下安装git并上传代码

    cat /etc/redhat-release   查看系统版本信息 >>CentOS Linux release 7.4.1708 (Core) 背景:我已经注册了github账号,之前 ...

  9. openvpn服务端与客户端网段互通

    http://www.softown.cn/post/140.html OpenVPN安装.配置教程 http://www.softown.cn/post/137.html openvpn的serve ...

  10. 【转】sed 高级用法

    首先,应该明白模式空间的定义.模式空间就是读入行所在的缓存,sed对文本行进行的处理都是在这个缓存中进行的.这对接下来的学习是有帮助的. 在正常情况下,sed将待处理的行读入模式空间,脚本中的命令就一 ...