[BZOJ2820][Luogu2257]YY的GCD
\]
多组数据,\(n\le 10^7\)
sol
开式子吧。
\]
其中\(p\)是质数
“是质数”这个条件就很烦,我们就只能\(O(\sum_{i=1}^{n}\lfloor \frac ni\rfloor)\)地去做。
但是\(10^7\)又过不去怎么办呢?
记得曾经yyb说:质数密度大概是\(\frac {1}{10}\)
哦,\(10^7\)的\(\frac {1}{10}\)那就是\(10^6\)?
然后\(O(\sum_{i=1}^{n}\lfloor \frac ni\rfloor)\)就可以跑啦?
所以直接爆跑。
code
时限改了,现在可以AC了。
#include<cstdio>
#include<algorithm>
using namespace std;
#define ll long long
const int N = 10000000;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
int pri[N+5],tot,zhi[N+5],mu[N+5],s[N+5];
void Mobius()
{
zhi[1]=mu[1]=1;
for (int i=2;i<=N;i++)
{
if (!zhi[i]) pri[++tot]=i,mu[i]=-1;
for (int j=1;j<=tot&&i*pri[j]<=N;j++)
{
zhi[i*pri[j]]=1;
if (i%pri[j]) mu[i*pri[j]]=-mu[i];
else break;
}
}
for (int j=1;j<=tot;j++)
for (int i=pri[j];i<=N;i+=pri[j])
s[i]+=mu[i/pri[j]];
for (int i=1;i<=N;i++)
s[i]+=s[i-1];
}
int main()
{
Mobius();
int T=gi();
while (T--)
{
int n=gi(),m=gi();
if (n>m) swap(n,m);
int i=1;ll ans=0;
while (i<=n)
{
int j=min(n/(n/i),m/(m/i));
ans+=1ll*(n/i)*(m/i)*(s[j]-s[i-1]);
i=j+1;
}
printf("%lld\n",ans);
}
return 0;
}
[BZOJ2820][Luogu2257]YY的GCD的更多相关文章
- 【BZOJ2820】YY的GCD(莫比乌斯反演)
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{ ...
- 【BZOJ2820】YY的GCD
[BZOJ2820]YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的( ...
- 【反演复习计划】【bzoj2820】YY的GCD
这题跟2818一样的,只不过数据水一点,可以用多一个log的办法水过去…… 原题意思是求以下式子:$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a}\ ...
- 【BZOJ2820】YY的GCD [莫比乌斯反演]
YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 求1<=x<=N, ...
- BZOJ2820:YY的GCD——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=2820 Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...
- BZOJ2820/LG2257 YY的GCD 莫比乌斯反演
问题描述 BZOJ2820 LG2257 题解 求 \(\sum\limits_{i=1}^{n}{\sum\limits_{j=1}^{m}{[gcd(i,j)==p]}}\) ,其中 \(p\)为 ...
- 并不对劲的bzoj2820:p2257:YY的GCD
题目大意 \(t\)(\(t\leq10^4\))组数据,给定\(n,m\)(\(n,m\leq10^6\))求 \[\sum_{x=1}^{n}\sum_{y=1}^{m}[gcd(x,y)=1]\ ...
- 【洛谷2257/BZOJ2820】YY的GCD(数论/莫比乌斯函数)
题目: 洛谷2257 预备知识:莫比乌斯定理(懵逼乌斯定理) \(\mu*1=\epsilon\)(证bu明hui略zheng) 其中(我校学长把\(\epsilon(x)\)叫单位函数但是为什么我没 ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演 数论分块)
题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\ ...
随机推荐
- 从Vue.js源码角度再看数据绑定
写在前面 因为对Vue.js很感兴趣,而且平时工作的技术栈也是Vue.js,这几个月花了些时间研究学习了一下Vue.js源码,并做了总结与输出.文章的原地址:https://github.com/an ...
- NOIP2017滚粗记
NOIP2017滚粗记 扯淡 考完联赛后一直在搞文化... 联赛过去了不知道多少天了才来写这东西.... Day0 早自习知道了要期中考试. 感觉心态炸裂了. 上午在乱敲板子.... 打了一堆莫名其妙 ...
- [bzoj]2962序列操作
[bzoj]2962序列操作 标签: 线段树 题目链接 题意 给你一串序列,要你维护三个操作: 1.区间加法 2.区间取相反数 3.区间内任意选k个数相乘的积 题解 第三个操作看起来一脸懵逼啊. 其实 ...
- 【Unity3D技术文档翻译】第1.1篇 AssetBundle 工作流
译者前言:本章是关于从创建到加载,再到使用 AssetBundle 的整个流程的概述.阅读本章将对 AssetBundle 的工作流程有个简单而全面的了解. 本章原文所在章节:[Unity Manua ...
- 机器学习之Adaboost (自适应增强)算法
注:本篇博文是根据其他优秀博文编写的,我只是对其改变了知识的排序,另外代码是<机器学习实战>中的.转载请标明出处及参考资料. 1 Adaboost 算法实现过程 1.1 什么是 Adabo ...
- 史上最全的FTP网址
无帐号密码的为匿名登录 ftp://202.114.1.121 ftp://202.114.10.199 ftp://warez:cn.ftp@202.114.12.174 ftp://Music2: ...
- PHP 是一门弱类型语言
PHP 是一门弱类型语言 我们注意到,不必向 PHP 声明该变量的数据类型. PHP 会根据变量的值,自动把变量转换为正确的数据类型. 在强类型的编程语言中,我们必须在使用变量前先声明(定义)变量的类 ...
- 1014. Waiting in Line (模拟)
n个窗口就有n个队列,模拟这n个队列就可以了.需要注意的是,一个人在选择排队窗口的时候,他会选择排队人数最少的窗口,如果存在多个窗口排队的人数相同,那么他会选择编码最小的窗口. Note that s ...
- 计蒜客 无脑博士 bfs
题目链接无脑博士的试管们 思路:直接模拟倒水过程即可,但是需要记忆判断当前的情况是否已经处理过.dfs和bfs都ok AC代码 #include <cstdio> #include < ...
- 【CF 678F】Lena and Queries
Time Limit: 2000 ms Memory Limit: 512 MB Description 初始有一个空集合 n个操作 有三种操作,如下: 1 a b 表示向集合中插入二元组(a,b ...