groupby官方解释

DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)

Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.

讲真的,非常不能理解pandas官方文档的这种表达形式,让人真的有点摸不着头脑,example给得又少,参数也不给得很清楚,不过没有办法,还是只能选择原谅他。

groupby我用过的用法

基本用法我这里就不呈现了,我觉得用过一次的人基本不会忘记,这里我主要写一下我用过的关系groupby函数的疑惑:

apply & agg

这个问题着实困扰了我很久,经过研究,找了一些可能帮助理解的东西。先举一个例子:

import pandas as pd
df = pd.DataFrame({'Q':['LI','ZHANG','ZHANG','LI','WANG'], 'A' : [1,1,1,2,2], 'B' : [1,-1,0,1,2], 'C' : [3,4,5,6,7]})
  A B C Q
0 1 1 3 LI
1 1 -1 4 ZHANG
2 1 0 5 ZHANG
3 2 1 6 LI
4 2 2 7 WANG
df.groupby('Q').apply(lambda x:print(x))
       A  B  C   Q
0 1 1 3 LI
3 2 1 6 LI
A B C Q
0 1 1 3 LI
3 2 1 6 LI
A B C Q
4 2 2 7 WANG
A B C Q
1 1 -1 4 ZHANG
2 1 0 5 ZHANG
 
df.groupby('Q').agg(lambda x:print(x))
    0    1
3 2
Name: A, dtype: int64
4 2
Name: A, dtype: int64
1 1
2 1
Name: A, dtype: int64
0 1
3 1
Name: B, dtype: int64
4 2
Name: B, dtype: int64
1 -1
2 0
Name: B, dtype: int64
0 3
3 6
Name: C, dtype: int64
4 7
Name: C, dtype: int64
1 4
2 5
Name: C, dtype: int64
  A B C
Q      
LI None None None
WANG None None None
ZHANG None None None

从这个例子可以看出,使用apply()处理的对象是一个个的类如DataFrame的数据表,然而agg()则每次只传入一列。

不过我觉得这一点区别在实际应用中分别并不大,因为Ipython的Out输出对于这两个函数几乎没有差别,不管是处理一列还是一表。

我觉得agg()有一点让我很开心就是他可以同时传入多个函数,简直不要太方便哈哈:

df.groupby('Q').agg(['mean','std','count','max'])
  A B C
  mean std count max mean std count max mean std count max
Q                        
LI 1.5 0.707107 2 2 1.0 0.000000 2 1 4.5 2.121320 2 6
WANG 2.0 NaN 1 2 2.0 NaN 1 2 7.0 NaN 1 7
ZHANG 1.0 0.000000 2 1 -0.5 0.707107 2 0 4.5 0.707107 2 5

Plotting

这个也是我刚刚学会的,groupby的plot简直不要太方便了:(不过这个例子选的不是很好)

%matplotlib inline
df.groupby('Q').agg(['mean','std','count','max']).plot(kind='bar')
<matplotlib.axes._subplots.AxesSubplot at 0x1133bd710>

MultiIndex

这个是困扰我最多的一个问题,因为如果我groupby的时候选择了两个level,之后的data总是呈现透视表的形式,如:

Muldf = df.groupby(['Q','A']).agg('mean')
print(Muldf)
               B    C
Q A
LI 1 1.0 3.0
2 1.0 6.0
WANG 2 2.0 7.0
ZHANG 1 -0.5 4.5

我开始甚至以为这应该不是dataframe,是一个我可能没注意过的一个东西,可是后来我发现,这不过是MultiIndex形式的一种dataframe罢了。

Muldf.B
    Q      A
LI 1 1.0
2 1.0
WANG 2 2.0
ZHANG 1 -0.5
Name: B, dtype: float64

如果要选择某一个index,用`xs()`函数:

Muldf.xs('LI')
  B C
A    
1 1.0 3.0
2 1.0 6.0

PS:有个问题困扰好久了,怎么把multiindex对象变回原来的形式呢。如:

Q      A
LI 1 1.0
LI 2 1.0
WANG 2 2.0
ZHANG 1 -0.5

求大佬解答,感激不尽~

Pandas之groupby( )用法笔记的更多相关文章

  1. Pandas高级教程之:GroupBy用法

    Pandas高级教程之:GroupBy用法 目录 简介 分割数据 多index get_group dropna groups属性 index的层级 group的遍历 聚合操作 通用聚合方法 同时使用 ...

  2. jquery中关于append()的用法笔记---append()节点移动与复制之说

    jquery中关于append()的用法笔记---append()节点移动与复制之说 今天看一本关于jquery的基础教程,看到其中一段代码关于append()的一行,总是百思不得其解.于是查了查官方 ...

  3. pandas获取groupby分组里最大值所在的行,获取第一个等操作

    pandas获取groupby分组里最大值所在的行 10/May 2016 python pandas pandas获取groupby分组里最大值所在的行 如下面这个DataFrame,按照Mt分组, ...

  4. python处理数据的风骚操作[pandas 之 groupby&agg]

    https://segmentfault.com/a/1190000012394176 介绍 每隔一段时间我都会去学习.回顾一下python中的新函数.新操作.这对于你后面的工作是有一定好处的.本文重 ...

  5. Py修行路 Pandas 模块基本用法

    pandas 安装方法:pip3 install pandas pandas是一个强大的Python数据分析的工具包,它是基于NumPy构建的模块. pandas的主要功能: 具备对其功能的数据结构D ...

  6. pandas之groupby分组与pivot_table透视表

    zhuanzi: https://blog.csdn.net/qq_33689414/article/details/78973267 pandas之groupby分组与pivot_table透视表 ...

  7. pandas之groupby分组与pivot_table透视

    一.groupby 类似excel的数据透视表,一般是按照行进行分组,使用方法如下. df.groupby(by=None, axis=0, level=None, as_index=True, so ...

  8. Pandas之groupby分组

    释义 groupby用来分组,调用groupby 之后返回pandas.core.groupby.generic.DataFrameGroupBy,其实就是由一个个格式为(key, 分组后的dataf ...

  9. [Python] Pandas 中 Series 和 DataFrame 的用法笔记

    目录 1. Series对象 自定义元素的行标签 使用Series对象定义基于字典创建数据结构 2. DataFrame对象 自定义行标签和列标签 使用DataFrame对象可以基于字典创建数据结构 ...

随机推荐

  1. SpringBoot入门之简单配置

    今天下载了<JavaEE开发的颠覆者SpringBoot实战>这本书,发现Spring还有好多遗漏的部分,算是又恶补了一下,今天主要是学习下SpringBoot的配置. 一.基本配置 1. ...

  2. 一个resin启动bug的解决

    这个bug的问题后来被确认为Resin所在目录层有中文目录名.--------------------------------------------------------------------- ...

  3. Ocelot中文文档-认证

    为了验证ReRoutes并随后使用Ocelot的任何基于声明的功能,如授权或使用令牌中的值修改请求. 用户必须像往常一样在他们的Startup.cs中注册认证服务,但他们给每个注册提供了一个方案(认证 ...

  4. RESTful规范建议

    RESTful概述 RESTful是目前最流行的一种互联网软件架构.它结构清晰.符合标准.易于理解.扩展方便,所以正得到越来越多网站的采用. REST是Representational State T ...

  5. .net core使用Ku.Core.Extensions.Layui实现layui表单渲染

    演示网站地址:http://layui.kulend.com/项目地址:https://github.com/kulend/Ku.Core.Extensions/tree/master/Ku.Core ...

  6. 网络-tcp

    1.TCP:面向连接可靠的传输协议,全拼:Transmission Control Protocol   2.UDP:用户数据报协议 全拼:User Datagram protocol 不是面向连接的 ...

  7. 进阶-JMS 知识梳理

    JMS 一. 概述与介绍 ActiveMQ 是Apache出品,最流行的.功能强大的即时通讯和集成模式的开源服务器.ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Pro ...

  8. PAT1113: Integer Set Partition

    1113. Integer Set Partition (25) 时间限制 150 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue ...

  9. SSM-MyBatis-12:Mybatis中添加单个对象返回主键id列

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 实体类 public class Book { private Integer bookID; private ...

  10. Java判断字符串是否为数字的自定义方法

    //方法一:用JAVA自带的函数 public static boolean isNumeric(String str){ for (int i = str.length();--i>=0;){ ...