Pandas之groupby( )用法笔记
groupby官方解释
DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_keys=True, squeeze=False, **kwargs)
Group series using mapper (dict or key function, apply given function to group, return result as series) or by a series of columns.
讲真的,非常不能理解pandas官方文档的这种表达形式,让人真的有点摸不着头脑,example给得又少,参数也不给得很清楚,不过没有办法,还是只能选择原谅他。
groupby我用过的用法
基本用法我这里就不呈现了,我觉得用过一次的人基本不会忘记,这里我主要写一下我用过的关系groupby函数的疑惑:
apply & agg
这个问题着实困扰了我很久,经过研究,找了一些可能帮助理解的东西。先举一个例子:
import pandas as pd
df = pd.DataFrame({'Q':['LI','ZHANG','ZHANG','LI','WANG'], 'A' : [1,1,1,2,2], 'B' : [1,-1,0,1,2], 'C' : [3,4,5,6,7]})
A | B | C | Q | |
---|---|---|---|---|
0 | 1 | 1 | 3 | LI |
1 | 1 | -1 | 4 | ZHANG |
2 | 1 | 0 | 5 | ZHANG |
3 | 2 | 1 | 6 | LI |
4 | 2 | 2 | 7 | WANG |
df.groupby('Q').apply(lambda x:print(x))
A B C Q
0 1 1 3 LI
3 2 1 6 LI
A B C Q
0 1 1 3 LI
3 2 1 6 LI
A B C Q
4 2 2 7 WANG
A B C Q
1 1 -1 4 ZHANG
2 1 0 5 ZHANG
df.groupby('Q').agg(lambda x:print(x))
0 1
3 2
Name: A, dtype: int64
4 2
Name: A, dtype: int64
1 1
2 1
Name: A, dtype: int64
0 1
3 1
Name: B, dtype: int64
4 2
Name: B, dtype: int64
1 -1
2 0
Name: B, dtype: int64
0 3
3 6
Name: C, dtype: int64
4 7
Name: C, dtype: int64
1 4
2 5
Name: C, dtype: int64
A | B | C | |
---|---|---|---|
Q | |||
LI | None | None | None |
WANG | None | None | None |
ZHANG | None | None | None |
从这个例子可以看出,使用apply()
处理的对象是一个个的类如DataFrame的数据表,然而agg()
则每次只传入一列。
不过我觉得这一点区别在实际应用中分别并不大,因为Ipython的Out输出对于这两个函数几乎没有差别,不管是处理一列还是一表。
我觉得agg()
有一点让我很开心就是他可以同时传入多个函数,简直不要太方便哈哈:
df.groupby('Q').agg(['mean','std','count','max'])
A | B | C | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
mean | std | count | max | mean | std | count | max | mean | std | count | max | |
Q | ||||||||||||
LI | 1.5 | 0.707107 | 2 | 2 | 1.0 | 0.000000 | 2 | 1 | 4.5 | 2.121320 | 2 | 6 |
WANG | 2.0 | NaN | 1 | 2 | 2.0 | NaN | 1 | 2 | 7.0 | NaN | 1 | 7 |
ZHANG | 1.0 | 0.000000 | 2 | 1 | -0.5 | 0.707107 | 2 | 0 | 4.5 | 0.707107 | 2 | 5 |
Plotting
这个也是我刚刚学会的,groupby的plot简直不要太方便了:(不过这个例子选的不是很好)
%matplotlib inline
df.groupby('Q').agg(['mean','std','count','max']).plot(kind='bar')
<matplotlib.axes._subplots.AxesSubplot at 0x1133bd710>
MultiIndex
这个是困扰我最多的一个问题,因为如果我groupby的时候选择了两个level,之后的data总是呈现透视表的形式,如:
Muldf = df.groupby(['Q','A']).agg('mean')
print(Muldf)
B C
Q A
LI 1 1.0 3.0
2 1.0 6.0
WANG 2 2.0 7.0
ZHANG 1 -0.5 4.5
我开始甚至以为这应该不是dataframe,是一个我可能没注意过的一个东西,可是后来我发现,这不过是MultiIndex形式的一种dataframe罢了。
Muldf.B
Q A
LI 1 1.0
2 1.0
WANG 2 2.0
ZHANG 1 -0.5
Name: B, dtype: float64
如果要选择某一个index,用`xs()`函数:
Muldf.xs('LI')
B | C | |
---|---|---|
A | ||
1 | 1.0 | 3.0 |
2 | 1.0 | 6.0 |
PS:有个问题困扰好久了,怎么把multiindex对象变回原来的形式呢。如:
Q A
LI 1 1.0
LI 2 1.0
WANG 2 2.0
ZHANG 1 -0.5
求大佬解答,感激不尽~
Pandas之groupby( )用法笔记的更多相关文章
- Pandas高级教程之:GroupBy用法
Pandas高级教程之:GroupBy用法 目录 简介 分割数据 多index get_group dropna groups属性 index的层级 group的遍历 聚合操作 通用聚合方法 同时使用 ...
- jquery中关于append()的用法笔记---append()节点移动与复制之说
jquery中关于append()的用法笔记---append()节点移动与复制之说 今天看一本关于jquery的基础教程,看到其中一段代码关于append()的一行,总是百思不得其解.于是查了查官方 ...
- pandas获取groupby分组里最大值所在的行,获取第一个等操作
pandas获取groupby分组里最大值所在的行 10/May 2016 python pandas pandas获取groupby分组里最大值所在的行 如下面这个DataFrame,按照Mt分组, ...
- python处理数据的风骚操作[pandas 之 groupby&agg]
https://segmentfault.com/a/1190000012394176 介绍 每隔一段时间我都会去学习.回顾一下python中的新函数.新操作.这对于你后面的工作是有一定好处的.本文重 ...
- Py修行路 Pandas 模块基本用法
pandas 安装方法:pip3 install pandas pandas是一个强大的Python数据分析的工具包,它是基于NumPy构建的模块. pandas的主要功能: 具备对其功能的数据结构D ...
- pandas之groupby分组与pivot_table透视表
zhuanzi: https://blog.csdn.net/qq_33689414/article/details/78973267 pandas之groupby分组与pivot_table透视表 ...
- pandas之groupby分组与pivot_table透视
一.groupby 类似excel的数据透视表,一般是按照行进行分组,使用方法如下. df.groupby(by=None, axis=0, level=None, as_index=True, so ...
- Pandas之groupby分组
释义 groupby用来分组,调用groupby 之后返回pandas.core.groupby.generic.DataFrameGroupBy,其实就是由一个个格式为(key, 分组后的dataf ...
- [Python] Pandas 中 Series 和 DataFrame 的用法笔记
目录 1. Series对象 自定义元素的行标签 使用Series对象定义基于字典创建数据结构 2. DataFrame对象 自定义行标签和列标签 使用DataFrame对象可以基于字典创建数据结构 ...
随机推荐
- SpringBoot入门之简单配置
今天下载了<JavaEE开发的颠覆者SpringBoot实战>这本书,发现Spring还有好多遗漏的部分,算是又恶补了一下,今天主要是学习下SpringBoot的配置. 一.基本配置 1. ...
- 一个resin启动bug的解决
这个bug的问题后来被确认为Resin所在目录层有中文目录名.--------------------------------------------------------------------- ...
- Ocelot中文文档-认证
为了验证ReRoutes并随后使用Ocelot的任何基于声明的功能,如授权或使用令牌中的值修改请求. 用户必须像往常一样在他们的Startup.cs中注册认证服务,但他们给每个注册提供了一个方案(认证 ...
- RESTful规范建议
RESTful概述 RESTful是目前最流行的一种互联网软件架构.它结构清晰.符合标准.易于理解.扩展方便,所以正得到越来越多网站的采用. REST是Representational State T ...
- .net core使用Ku.Core.Extensions.Layui实现layui表单渲染
演示网站地址:http://layui.kulend.com/项目地址:https://github.com/kulend/Ku.Core.Extensions/tree/master/Ku.Core ...
- 网络-tcp
1.TCP:面向连接可靠的传输协议,全拼:Transmission Control Protocol 2.UDP:用户数据报协议 全拼:User Datagram protocol 不是面向连接的 ...
- 进阶-JMS 知识梳理
JMS 一. 概述与介绍 ActiveMQ 是Apache出品,最流行的.功能强大的即时通讯和集成模式的开源服务器.ActiveMQ 是一个完全支持JMS1.1和J2EE 1.4规范的 JMS Pro ...
- PAT1113: Integer Set Partition
1113. Integer Set Partition (25) 时间限制 150 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue ...
- SSM-MyBatis-12:Mybatis中添加单个对象返回主键id列
------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 实体类 public class Book { private Integer bookID; private ...
- Java判断字符串是否为数字的自定义方法
//方法一:用JAVA自带的函数 public static boolean isNumeric(String str){ for (int i = str.length();--i>=0;){ ...