In numerical analysisNewton's method (also known as the Newton–Raphson method), named after Isaac Newton and Joseph Raphson, is a method for finding successively better approximations to the roots (or zeroes) of a real-valued function. It is one example of a root-finding algorithm.

{\displaystyle x:f(x)=0\,.}

The Newton–Raphson method in one variable is implemented as follows:

The method starts with a function f defined over the real numbers x, the function's derivative f ′, and an initial guess x0 for a root of the function f. If the function satisfies the assumptions made in the derivation of the formula and the initial guess is close, then a better approximation x1 is

{\displaystyle x_{1}=x_{0}-{\frac {f(x_{0})}{f'(x_{0})}}\,.}

Geometrically, (x1, 0) is the intersection of the x-axis and the tangent of the graph of f at (x0f (x0)).

The process is repeated as

{\displaystyle x_{n+1}=x_{n}-{\frac {f(x_{n})}{f'(x_{n})}}\,}

until a sufficiently accurate value is reached.

具体实现过程如下:

#include <iostream>
#include<cmath>
using std:: cin;
using std::cout;
using std::endl;
#define EPSILON 1e-6 double f (double x)
{
return 2*pow(x,3)+4*pow(x,2)+3*x-6;
}
double f_prime(double x)
{
return 6*pow(x,2)-8*x+3;
}
double new (double(*f)(double),double(*f_frime)(double))
{
double x=1.5;
while(fabs((*f)(x))>EPSILON)
{
x=x-(*f)(x)/(*f_prime(x));
}
return x;
} int main()
{
cout<<newton(f,f_prime)<<endl;
returen 0;
}

  

C++函数式编程实现牛顿法的更多相关文章

  1. Scala 中的函数式编程基础(一)

    主要来自 Scala 语言发明人 Martin Odersky 教授的 Coursera 课程 <Functional Programming Principles in Scala>. ...

  2. angular2系列教程(六)两种pipe:函数式编程与面向对象编程

    今天,我们要讲的是angualr2的pipe这个知识点. 例子

  3. [学习笔记]JavaScript之函数式编程

    欢迎指导与讨论:) 前言 函数式编程能使我们的代码结构变得简洁,让代码更接近于自然语言,易于理解. 一.减少不必要的函数嵌套代码 (1)当存在函数嵌套时,若内层函数的参数与外层函数的参数一致时,可以这 ...

  4. 函数式编程之柯里化(curry)

    函数式编程curry的概念: 只传递给函数一部分参数来调用函数,然后返回一个函数去处理剩下的参数. var add = function(x) { return function(y) { retur ...

  5. 关于Java8函数式编程你需要了解的几点

    函数式编程与面向对象的设计方法在思路和手段上都各有千秋,在这里,我将简要介绍一下函数式编程与面向对象相比的一些特点和差异. 函数作为一等公民 在理解函数作为一等公民这句话时,让我们先来看一下一种非常常 ...

  6. Haskell 函数式编程快速入门【草】

    什么是函数式编程 用常规编程语言中的函数指针.委托和Lambda表达式等概念来帮助理解(其实函数式编程就是Lambda演算延伸而来的编程范式). 函数式编程中函数可以被非常容易的定义和传递. Hask ...

  7. java1.8函数式编程概念

    有关函数式编程 ·1 函数作为一等公民 特点:将函数作为参数传递给另外一个函数:函数可以作为另外一个函数的返回值 ·2 无副作用 函数的副作用指的是函数在调用过程中,除了给出了返回值外,还修改了函数外 ...

  8. 让JavaScript回归函数式编程的本质

    JavaScript是一门被误会最深的语言,这话一点不假,我们看下它的发展历史. 1995年,Netscape要推向市场,需要一门脚本语言来配套它.是使用一门已有的语言,还是发明一门新的语言,这也不是 ...

  9. python基础-函数式编程

    python基础-函数式编程  高阶函数:map , reduce ,filter,sorted 匿名函数:  lambda  1.1函数式编程 面向过程编程:我们通过把大段代码拆成函数,通过一层一层 ...

随机推荐

  1. 同样是IT培训,为什么人家月薪过万,你才几千,问题在哪?!

    听过一句话"360行,行行转IT",虽然有些夸张,但也不难看出IT行业的火爆程度.从李总理提的"互联网+大数据"开始,中国的这场"互联网+" ...

  2. c# windows service 实现监控其他程序是否被关闭,关闭则报警

    namespace MonitorService { public partial class MonitorSv : ServiceBase { string AppName = "&qu ...

  3. sublime的使用技巧

    ctr+shift+d是复制当前行当下一行2.使用Sublime text 3 编写代码是一种享受,使用Sublime text 3 格式化HTML代码,需要安装插件,具体安装步骤如下:1.打开菜单- ...

  4. 安装CentOS7,连接mysql提示密码错误

    1.grep 'temporary password' /var/log/mysqld.log 如果上面命令没有查看到密码 2.修改my.cnf文件.在mysqld下加入skip-grant-tabl ...

  5. java设计模式—— 工厂模式

    菜鸡互啄... 工厂模式通过定义一个创建对象的接口,让其子类决定实例化哪个工厂类.因此我们要解决接口选择的问题,实现不同的计划创建不同的对象. 首先我们定义一个轿车接口 public interfac ...

  6. poj 1639 Picnic Planning 度限制mst

    https://vjudge.net/problem/POJ-1639 题意: 有一群人,他们要去某一个地方,每个车可以装无数个人,给出了n条路,包含的信息有路连接的地方,以及路的长度,路是双向的,但 ...

  7. Android学习——移植tr069程序到Android平台

    原创作品,转载请注明出处,严禁非法转载.如有错误,请留言! email:40879506@qq.com 声明:本系列涉及的开源程序代码学习和研究,严禁用于商业目的. 如有任何问题,欢迎和我交流.(企鹅 ...

  8. Struts(十八):通过CURD来学习PrepareInterceptor拦截器

    PrepareInterceptor拦截器的用法: 1.若Action实现了Preparable接口,则Action方法需实现prepare()方法: 2.PrepareInterceptor拦截器S ...

  9. scrapy选择器主要用法

    # 命令行输入:scrapy shell +链接,会自动请求url,得到的相应默认为response,开启命令行交互模式 scrapy shell http://doc.scrapy.org/en/l ...

  10. SSH端口转发(本地转发、远程转发、动态转发)

    SSH端口转发   一:什么是端口转发?     SSH 会自动加密和解密所有SSH 客户端与服务端之间的网络数据.但是,SSH 还能够将其他TCP 端口的网络数据通过SSH 链接来转发,并且自动提供 ...