In numerical analysisNewton's method (also known as the Newton–Raphson method), named after Isaac Newton and Joseph Raphson, is a method for finding successively better approximations to the roots (or zeroes) of a real-valued function. It is one example of a root-finding algorithm.

{\displaystyle x:f(x)=0\,.}

The Newton–Raphson method in one variable is implemented as follows:

The method starts with a function f defined over the real numbers x, the function's derivative f ′, and an initial guess x0 for a root of the function f. If the function satisfies the assumptions made in the derivation of the formula and the initial guess is close, then a better approximation x1 is

{\displaystyle x_{1}=x_{0}-{\frac {f(x_{0})}{f'(x_{0})}}\,.}

Geometrically, (x1, 0) is the intersection of the x-axis and the tangent of the graph of f at (x0f (x0)).

The process is repeated as

{\displaystyle x_{n+1}=x_{n}-{\frac {f(x_{n})}{f'(x_{n})}}\,}

until a sufficiently accurate value is reached.

具体实现过程如下:

#include <iostream>
#include<cmath>
using std:: cin;
using std::cout;
using std::endl;
#define EPSILON 1e-6 double f (double x)
{
return 2*pow(x,3)+4*pow(x,2)+3*x-6;
}
double f_prime(double x)
{
return 6*pow(x,2)-8*x+3;
}
double new (double(*f)(double),double(*f_frime)(double))
{
double x=1.5;
while(fabs((*f)(x))>EPSILON)
{
x=x-(*f)(x)/(*f_prime(x));
}
return x;
} int main()
{
cout<<newton(f,f_prime)<<endl;
returen 0;
}

  

C++函数式编程实现牛顿法的更多相关文章

  1. Scala 中的函数式编程基础(一)

    主要来自 Scala 语言发明人 Martin Odersky 教授的 Coursera 课程 <Functional Programming Principles in Scala>. ...

  2. angular2系列教程(六)两种pipe:函数式编程与面向对象编程

    今天,我们要讲的是angualr2的pipe这个知识点. 例子

  3. [学习笔记]JavaScript之函数式编程

    欢迎指导与讨论:) 前言 函数式编程能使我们的代码结构变得简洁,让代码更接近于自然语言,易于理解. 一.减少不必要的函数嵌套代码 (1)当存在函数嵌套时,若内层函数的参数与外层函数的参数一致时,可以这 ...

  4. 函数式编程之柯里化(curry)

    函数式编程curry的概念: 只传递给函数一部分参数来调用函数,然后返回一个函数去处理剩下的参数. var add = function(x) { return function(y) { retur ...

  5. 关于Java8函数式编程你需要了解的几点

    函数式编程与面向对象的设计方法在思路和手段上都各有千秋,在这里,我将简要介绍一下函数式编程与面向对象相比的一些特点和差异. 函数作为一等公民 在理解函数作为一等公民这句话时,让我们先来看一下一种非常常 ...

  6. Haskell 函数式编程快速入门【草】

    什么是函数式编程 用常规编程语言中的函数指针.委托和Lambda表达式等概念来帮助理解(其实函数式编程就是Lambda演算延伸而来的编程范式). 函数式编程中函数可以被非常容易的定义和传递. Hask ...

  7. java1.8函数式编程概念

    有关函数式编程 ·1 函数作为一等公民 特点:将函数作为参数传递给另外一个函数:函数可以作为另外一个函数的返回值 ·2 无副作用 函数的副作用指的是函数在调用过程中,除了给出了返回值外,还修改了函数外 ...

  8. 让JavaScript回归函数式编程的本质

    JavaScript是一门被误会最深的语言,这话一点不假,我们看下它的发展历史. 1995年,Netscape要推向市场,需要一门脚本语言来配套它.是使用一门已有的语言,还是发明一门新的语言,这也不是 ...

  9. python基础-函数式编程

    python基础-函数式编程  高阶函数:map , reduce ,filter,sorted 匿名函数:  lambda  1.1函数式编程 面向过程编程:我们通过把大段代码拆成函数,通过一层一层 ...

随机推荐

  1. LeetCode & Q88-Merge Sorted Array-Easy

    Array Two Pointers Description: Given two sorted integer arrays nums1 and nums2, merge nums2 into nu ...

  2. 阿里云API网关(8)开发指南-SDK下载

    网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...

  3. EasyUI 数据网格行过滤

    前段时间发现一个GridView很有用的功能,可以筛选数据,实现起来很简单 一.添加一个引用,这个可以自己去网上下载 <script type="text/javascript&quo ...

  4. logback打印日志时添加上下文

    尝试上述特性, 配置如下: 效果:

  5. Python入门之PyCharm的快捷键与常用设置和扩展(Mac系统)

    1. 快捷键 2 . PyCharm的常用设置和扩展 ------------------------------------------------------------------------- ...

  6. String、StringBuffer、StringBulider之间的联系和区别

    首先,我们大概总体的解释一下这三者的区别和联系 String的值是不可变的,这就导致每次对String的操作都会生成新的String对象,不仅效率低下,而且大量浪费有限的内存空间. StringBuf ...

  7. Hibernate(九):基于主键映射的1-1关联关系

    背景: 在实际开发中我们会遇到新建一个用户表,但这个表字段过长,而且有写字段常用(主要),有些字段比较不常用(次要).此时,我们会考虑到把用户信息拆分到两张表中:member(存储用户主要信息),me ...

  8. 教你如何用AST语法树对代码“动手脚”

    个推安卓工程师,负责公司移动端项目的架构和开发,主导移动端日志管理平台系统架构和开发工作,熟悉前后端的技术线,参与个推SDK主要业务研发工作,善于解决项目中遇到的痛点问题. 作为程序猿,每天都在写代码 ...

  9. 闭包(closure)

    大牛的讲解,点击 我们首先需要有作用域的概念,点击 那么什么是闭包? 官方的解释是:闭包是一个拥有许多变量和绑定了这些变量的环境的表达式(通常是一个函数),因而这些变量也是该表达式的一部分. 广义上的 ...

  10. python3安装ibm_db

    在安装好python3之后,使用pip install ibm_db总是报错. 然后按照官方文档的说明添加了环境变量IBM_DB_HOME, 同时在命令行执行easy_install ibm_db就可 ...