[Codeforces]813F Bipartite Checking
往期题目补档。既然被选为了经典题就拿来写一写。
Description
给定一张含有n个点的无向图,一开始图中没有任何边。依次给出q次操作,每次操作给出两个点“x y”,若x和y之间没有边相连,则连上这条边,否则移除这条边。对于每次操作,你都要判断执行这一次操作之后,整张图是否为二分图。
Input
第一行两个正整数n,q,表示点数和操作数。
接下来q行,每行两个正整数“x y”表示操作。
Output
对于每次操作,判断执行该操作后,整张图是否为二分图,若为二分图,输出“YES”,否则输出“NO”。
Sample Input
3 5
2 3
1 3
1 2
1 2
1 2
Sample Output
YES
YES
NO
YES
NO
HINT
2 <= n,q <= 100000,1 <= x < y <= n。
Solution
Link Cut 二分图问题??
然而我似乎知道只支持加边的判断二分图有一个绝妙的算法,然而怎么做到删除?
实际上,我们换一个想法,就可以通过离线处理把删除转化为撤销。
我们的每次询问实际上都是对图的一个状态进行询问,我们把操作序列看作一个时间戳。
如样例,在第一时刻,图中的边有(2,3);第二时刻和第四时刻,图中的边有(2,3)、(1,3);第三时刻有(2,3)、(1,3)、(1,2)……
最最朴素的想法,对于每个时刻,我们把该时刻存在的边全部插入,判断答案,然后清空,进行下一时刻的统计。
这样的操作数显然是q^2的,但我们注意到某些边存在的时间是连续的一段区间,似乎不需要频繁地插入撤销?
于是我们就有了线段树分治。
我们按时间戳开一个线段树,然后把每条边按照存在的时间段丢进线段树里。
每条边确确实实是被“丢”进线段树里的,找到该时间段在线段树里对应的至多log个区间,把这条边也就是这个操作存起来而已。
每条边每进行一对插入和删除操作,就会产生一段时间段;对于直到q时刻还存在于图中的边,我们认为它们在q+1时刻被删除了。
这样的操作数是qlogq的,也就是说我们用一个log的时间代价将删除操作变为撤销操作。
这样我们已经完成了核心的分治操作。
剩下的我们只要将这棵线段树dfs一遍,每到一个结点,把该结点中存储的操作加入,离开的时候撤销掉这些操作,在底层计算答案即可。
撤销一般有两种方式,一种是存储父结点的状态,另一种是执行该操作的逆操作。
说了这么多,这一题该如何在支持加边操作的情况下判断二分图呢?
由二分图染色的思想,我们有一种带权并查集的做法。
对于一张二分图内的一个联通块,一旦点A相对于点B的颜色确定,那么点A相对于该联通块内的其他点的颜色都能确定。
于是我们在并查集内除了维护父亲是谁,还要维护它相对于父亲的颜色(相同或相异)。
当一张图加入了这样一条边之后,它就不再是二分图:这条边连接了一个联通块内颜色相同的结点。
至于撤销,显然不能存储父结点的状态,只能执行逆操作,所以我们要用到并查集的按秩合并以支持撤销。
总时间复杂度O(qlogqlogn)。
#include <cstdio>
#include <vector>
#include <algorithm>
#define MN 100005
#define l(a) (a<<1)
#define r(a) (a<<1|1)
using namespace std;
struct node{int x,y;};
struct rlt{int fa,rel;};
struct meg{int x,y,t;}a[MN];
vector <node> d[MN<<],e[MN<<];
int f[MN],g[MN],siz[MN],ans[MN];
int n,m; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} rlt getrel(int x)
{
if (!f[x]) return (rlt){x,};
rlt lt=getrel(f[x]);
return (rlt) {lt.fa,lt.rel^g[x]};
} void getins(int x,int L,int R,int ql,int qr,int yl,int yr)
{
if (ql==L&&qr==R) {e[x].push_back((node){yl,yr}); return;}
int mid=L+R>>;
if (qr<=mid) getins(l(x),L,mid,ql,qr,yl,yr);
else if (ql>mid) getins(r(x),mid+,R,ql,qr,yl,yr);
else getins(l(x),L,mid,ql,mid,yl,yr),getins(r(x),mid+,R,mid+,qr,yl,yr);
} void dfs(int x,int L,int R,int u)
{
register int i;
rlt xf,yf;
for (i=;i<e[x].size();++i)
{
xf=getrel(e[x][i].x); yf=getrel(e[x][i].y);
if (xf.fa==yf.fa) {if (xf.rel==yf.rel) u|=;}
else
{
if (siz[xf.fa]<siz[yf.fa]) swap(xf,yf);
siz[xf.fa]+=siz[yf.fa];
f[yf.fa]=xf.fa;
g[yf.fa]=xf.rel^yf.rel^;
d[x].push_back((node){xf.fa,yf.fa});
}
}
if (L==R) ans[L]=u;
else
{
int mid=L+R>>;
dfs(l(x),L,mid,u); dfs(r(x),mid+,R,u);
}
for (i=d[x].size()-;i>=;--i)
{
siz[d[x][i].x]-=siz[d[x][i].y];
f[d[x][i].y]=g[d[x][i].y]=;
}
} bool cmp(const meg& a,const meg& b)
{
if (a.x!=b.x) return a.x<b.x;
if (a.y!=b.y) return a.y<b.y;
return a.t<b.t;
} int main()
{
register int i;
n=read(); m=read();
for (i=;i<=m;++i) a[i].x=read(),a[i].y=read(),a[i].t=i;
sort(a+,a+m+,cmp);
for (i=;i<=m;)
if (a[i].x==a[i+].x&&a[i].y==a[i+].y) getins(,,m,a[i].t,a[i+].t-,a[i].x,a[i].y),i+=;
else getins(,,m,a[i].t,m,a[i].x,a[i].y),++i;
for (i=;i<=n;++i) siz[i]=;
dfs(,,m,);
for (i=;i<=m;++i) puts(ans[i]?"NO":"YES");
}
Last Word
推荐一波小D的《离线处理修改操作的分治算法(CDQ分治、线段树分治入门)》。
别找了,你找不到的。
每次打按秩合并的并查集总会忘记把初始大小赋为1,真是见鬼。
[Codeforces]813F Bipartite Checking的更多相关文章
- Bipartite Checking CodeForces - 813F (线段树按时间分治)
大意: 动态添边, 询问是否是二分图. 算是个线段树按时间分治入门题, 并查集维护每个点到根的奇偶性即可. #include <iostream> #include <sstream ...
- Codeforces 901C Bipartite Segments
Bipartite Segments 因为图中只存在奇数长度的环, 所以它是个只有奇数环的仙人掌, 每条边只属于一个环. 那么我们能把所有环给扣出来, 所以我们询问的区间不能包含每个环里的最大值和最小 ...
- Codeforces 901C Bipartite Segments(Tarjan + 二分)
题目链接 Bipartite Segments 题意 给出一个无偶环的图,现在有$q$个询问.求区间$[L, R]$中有多少个子区间$[l, r]$ 满足$L <= l <= r &l ...
- Codeforces 901C. Bipartite Segments(思维题)
擦..没看见简单环..已经想的七七八八了,就差一步 显然我们只要知道一个点最远可以向后扩展到第几个点是二分图,我们就可以很容易地回答每一个询问了,但是怎么求出这个呢. 没有偶数简单环,相当于只有奇数简 ...
- 【63.63%】【codeforces 724A】Checking the Calendar
time limit per test1 second memory limit per test256 megabytes inputstandard input outputstandard ou ...
- Educational Codeforces Round 22 补题 CF 813 A-F
A The Contest 直接粗暴贪心 略过 #include<bits/stdc++.h> using namespace std; int main() {//freopen(&qu ...
- 【CodeForces】901 C. Bipartite Segments
[题目]C. Bipartite Segments [题意]给定n个点m条边的无向连通图,保证不存在偶数长度的简单环.每次询问区间[l,r]中包含多少子区间[x,y]满足只保留[x,y]之间的点和边构 ...
- CodeForces - 600F Edge coloring of bipartite graph
Discription You are given an undirected bipartite graph without multiple edges. You should paint the ...
- Codeforces Round #453 (Div. 1) 901C C. Bipartite Segments
题 http://codeforces.com/contest/901/problem/C codeforces 901C 解 首先因为图中没有偶数长度的环,所以: 1.图中的环长度全是奇数,也就是说 ...
随机推荐
- Hibernate与mysql的对应类型
Hibernate映射类型 Java类型 标准SQL类型 integer java.lang.Integer integer long java.lang.Long bigint sho ...
- animation & @keyframes 实现loading效果
效果图截图如下: 直接上代码: html <!DOCTYPE html> <html> <head> <meta charset="utf-8&qu ...
- nyoj 疯牛
疯牛 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 农夫 John 建造了一座很长的畜栏,它包括N (2 <= N <= 100,000)个隔间,这些小 ...
- JAVA_SE基础——10.变量的作用域
<pre name="code" class="java"> 上个月实在太忙了,从现在开始又可以静下心来写blog了. 变量的作用域指 可以使用此变 ...
- Jenkins 安装、配置与项目新建及构建
1.Jenkins的安装与配置 1.1 java环境配置 Jenkins基于Java, Linux下安装java只要配置java环境变量即可. 首先,解压java到相应目录,我一般习惯把安装的软件放到 ...
- VMware vCenter Server 6.5.0 U1
VMware vCenter Server 6.5.0 U1gName: VMware-VCSA-all-6.5.0-8024368.iso Release Date: 2018-03-20 Buil ...
- cannot import name 'ChineseAnalyzer'
在python3.6下安装jieba3k的时候报错: from jieba.analyse import ChineseAnalyzer ImportError: cannot import name ...
- 高级控件 popwindow 与gridview的组合应用
Gridview 的布局设置 <GridView android:layout_width="wrap_content" android:layout_height=&quo ...
- Java:import com.sun.awt.AWTUtilities;报错
参考网址:http://stackoverflow.com/questions/860187/access-restriction-on-class-due-to-restriction-on-req ...
- [转]Python多进程并发操作中进程池Pool的应用
Pool类 在使用Python进行系统管理时,特别是同时操作多个文件目录或者远程控制多台主机,并行操作可以节约大量的时间.如果操作的对象数目不大时,还可以直接使用Process类动态的生成多个进程,十 ...