斯坦福CS224n作业一

softmax

作业要求如下:

解析:题目要求我们证明\(softmax\)函数具有常数不变性。

解答:对于\(x+c\)的每一维来说,有如下等式成立:
\[softmax(x+c)_{i}=\frac{e^{x_{i}+c}}{\sum_{j}e^{x_{j}+c}}=\frac{e^{x_{i}}*e^{c}}{\sum_{j}(e^{x_{j}}*e^{c})}=\frac{e^{x_{i}}*e^{c}}{\sum_{j}(e^{x_{j}})*e^{c}}=\frac{e^{x_{i}}}{\sum_{j}e^{x_{j}}}=softmax(x)_{i}\]
则可知\(softmax(x)=softmax(x+c)\)成立

Neural Network Basics

求解sigmoid函数梯度

作业要求如下:

解析:本题要求我们计算\(\sigma(x)\)函数的梯度,并用\(\sigma(x)\)表示结果
解答:\[\frac{\partial{(\sigma(x)})}{\partial{x}}=\frac{\partial{(\frac{1}{1+e^{-x}}})}{\partial{x}}\]
设\(a=1+e^{-x}\),应用链式法则可以得到:
\[\frac{\partial{(\sigma(x)})}{\partial{x}}=\frac{\partial{(\frac{1}{a}})}{\partial{x}}=-(\frac{1}{a})^{2}*\frac{\partial{a}}{\partial{x}}=-(\frac{1}{a})^{2}*e^{-x}*(-1)=\frac{e^{-x}}{(1+e^{-x})^{2}}\]
用\(\sigma(x)\)可以表示为\(\sigma(x)-\sigma(x)^{2}\)

softmax + 交叉熵的梯度推导

作业要求如下:

解析:本题给定了实际值\(y\),预测值\(\hat{y}\),以及softmax的输入向量\(\theta\),要求我们求解\(CE(y,\hat{y})\)对\(\theta\)的梯度
解答:
对于每个\(\theta_{i}\)来说,\(CE(y,\hat{y})\)对\(\theta_{i}\)的梯度如下所示:

可知,对于所有的i来说,\(CE(y,\hat{y})\)对\(\theta_{i}\)的梯度为\(\hat{y}-y\)。

三层神经网络的梯度推导

作业要求如下:

解析:本题要求推导\(CE(y,\hat{y})\)对输入\(x\)的梯度。
解答:

斯坦福CS224n课程作业的更多相关文章

  1. 斯坦福NLP课程 | 第1讲 - NLP介绍与词向量初步

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  2. 斯坦福NLP课程 | 第2讲 - 词向量进阶

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  3. 斯坦福NLP课程 | 第11讲 - NLP中的卷积神经网络

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  4. 斯坦福NLP课程 | 第12讲 - NLP子词模型

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  5. 斯坦福NLP课程 | 第15讲 - NLP文本生成任务

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  6. 斯坦福NLP课程 | 第18讲 - 句法分析与树形递归神经网络

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  7. 关于Coursera上的斯坦福机器学习课程的编程作业提交问题

    学习Coursera上的斯坦福机器学习课程的时候,需要向其服务器提交编程作业,我遇到如下问题: 'Submission failed: unexpected error: urlread: Peer ...

  8. 斯坦福大学cs231n作业参考(中文版)

    cs231n2016冬季课程作业完成,在原先的基础上进行了翻译和中文注释,同时增加了16之后版本的部分新作业文件,已经全部跑通,需要的欢迎自取. 斯坦福大学的 CS231n(全称:面向视觉识别的卷积神 ...

  9. Web编程基础--HTML、CSS、JavaScript 学习之课程作业“仿360极速浏览器新标签页”

    Web编程基础--HTML.CSS.JavaScript 学习之课程作业"仿360极速浏览器新标签页" 背景: 作为一个中专网站建设出身,之前总是做静态的HTML+CSS+DIV没 ...

随机推荐

  1. Ocelot中文文档-Qos服务质量

    目前Ocelot支持一种QoS功能. 如果您希望在请求向下游服务时使用断路,则可以在ReRoute中进行设置. 这个功能使用了一个名为Polly的.NET库,这个库很棒,在这里可以找到它. 添加如下配 ...

  2. OCR智能识别身份信息

    本人研究了两款OCR智能识别的API,下面做详解! 第一款是百度云的OCR识别,填写配置信息,每天有五百次免费的识别次数,适合中小型客户流量可以使用.API文档:http://ai.baidu.com ...

  3. 【转】java中PriorityQueue优先级队列使用方法

    优先级队列是不同于先进先出队列的另一种队列.每次从队列中取出的是具有最高优先权的元素. PriorityQueue是从JDK1.5开始提供的新的数据结构接口. 如果不提供Comparator的话,优先 ...

  4. 13.git的简单使用

    安装 https://git-scm.com/downloads 一直点下一步就可以,安装完后打开方法:‘开始菜单’-->'Git'-->''Git Bash 安装完成后设置名字和电子邮件 ...

  5. .NET之JSON序列化运用

    1.项目引用NuGet包:搜索:Newtonsoft.Json 2.序列号实例 using System; using System.Collections.Generic; using System ...

  6. 如何用Redis做LRU-Cache

    LRU(Least Recently Used)最近最少使用算法是众多置换算法中的一种. Redis中有一个maxmemory概念,主要是为了将使用的内存限定在一个固定的大小.Redis用到的LRU ...

  7. 并发库应用之十 & 多线程数据交换Exchanger应用

    申明:用大白话来说就是用于实现两个人之间的数据交换,每个人在完成一定的事务后想与对方交换数据,第一个先拿出数据的人会一直等待第二个人,直到第二个人拿着数据到来时,才能彼此交换数据. java.util ...

  8. Spring Boot 2.0 教程 - 深入SpringAplication

    原文连接:https://www.codemore.top/cates/Backend/post/2018-05-20/spring-boot-SpringApplication 可以通过Spring ...

  9. Spring cloud整体框架

    研究了一段时间spring boot了准备向spirng cloud进发,公司架构和项目也全面拥抱了Spring Cloud.在使用了一段时间后发现Spring Cloud从技术架构上降低了对大型系统 ...

  10. tkinter中表格的建立(十三)

    表格的建立 import tkinter from tkinter import ttk wuya = tkinter.Tk() wuya.title("wuya") wuya.g ...