斯坦福CS224n作业一

softmax

作业要求如下:

解析:题目要求我们证明\(softmax\)函数具有常数不变性。

解答:对于\(x+c\)的每一维来说,有如下等式成立:
\[softmax(x+c)_{i}=\frac{e^{x_{i}+c}}{\sum_{j}e^{x_{j}+c}}=\frac{e^{x_{i}}*e^{c}}{\sum_{j}(e^{x_{j}}*e^{c})}=\frac{e^{x_{i}}*e^{c}}{\sum_{j}(e^{x_{j}})*e^{c}}=\frac{e^{x_{i}}}{\sum_{j}e^{x_{j}}}=softmax(x)_{i}\]
则可知\(softmax(x)=softmax(x+c)\)成立

Neural Network Basics

求解sigmoid函数梯度

作业要求如下:

解析:本题要求我们计算\(\sigma(x)\)函数的梯度,并用\(\sigma(x)\)表示结果
解答:\[\frac{\partial{(\sigma(x)})}{\partial{x}}=\frac{\partial{(\frac{1}{1+e^{-x}}})}{\partial{x}}\]
设\(a=1+e^{-x}\),应用链式法则可以得到:
\[\frac{\partial{(\sigma(x)})}{\partial{x}}=\frac{\partial{(\frac{1}{a}})}{\partial{x}}=-(\frac{1}{a})^{2}*\frac{\partial{a}}{\partial{x}}=-(\frac{1}{a})^{2}*e^{-x}*(-1)=\frac{e^{-x}}{(1+e^{-x})^{2}}\]
用\(\sigma(x)\)可以表示为\(\sigma(x)-\sigma(x)^{2}\)

softmax + 交叉熵的梯度推导

作业要求如下:

解析:本题给定了实际值\(y\),预测值\(\hat{y}\),以及softmax的输入向量\(\theta\),要求我们求解\(CE(y,\hat{y})\)对\(\theta\)的梯度
解答:
对于每个\(\theta_{i}\)来说,\(CE(y,\hat{y})\)对\(\theta_{i}\)的梯度如下所示:

可知,对于所有的i来说,\(CE(y,\hat{y})\)对\(\theta_{i}\)的梯度为\(\hat{y}-y\)。

三层神经网络的梯度推导

作业要求如下:

解析:本题要求推导\(CE(y,\hat{y})\)对输入\(x\)的梯度。
解答:

斯坦福CS224n课程作业的更多相关文章

  1. 斯坦福NLP课程 | 第1讲 - NLP介绍与词向量初步

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  2. 斯坦福NLP课程 | 第2讲 - 词向量进阶

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  3. 斯坦福NLP课程 | 第11讲 - NLP中的卷积神经网络

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  4. 斯坦福NLP课程 | 第12讲 - NLP子词模型

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  5. 斯坦福NLP课程 | 第15讲 - NLP文本生成任务

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  6. 斯坦福NLP课程 | 第18讲 - 句法分析与树形递归神经网络

    作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...

  7. 关于Coursera上的斯坦福机器学习课程的编程作业提交问题

    学习Coursera上的斯坦福机器学习课程的时候,需要向其服务器提交编程作业,我遇到如下问题: 'Submission failed: unexpected error: urlread: Peer ...

  8. 斯坦福大学cs231n作业参考(中文版)

    cs231n2016冬季课程作业完成,在原先的基础上进行了翻译和中文注释,同时增加了16之后版本的部分新作业文件,已经全部跑通,需要的欢迎自取. 斯坦福大学的 CS231n(全称:面向视觉识别的卷积神 ...

  9. Web编程基础--HTML、CSS、JavaScript 学习之课程作业“仿360极速浏览器新标签页”

    Web编程基础--HTML.CSS.JavaScript 学习之课程作业"仿360极速浏览器新标签页" 背景: 作为一个中专网站建设出身,之前总是做静态的HTML+CSS+DIV没 ...

随机推荐

  1. Jersey VS Django-Rest

    在对Restful服务框架做对比前,主要先说说Restful设计的三大主要元素:以资源为核心的资源方法.资源状态.关系链接超媒体表述. 辅助的有内容协商.安全.版本化设计等. Jersey作为Java ...

  2. linux(centos 7)学习之 ~目录下的文件anaconda-ks.cfg

    这个文件是记录安装系统的一些信息 #version=DEVEL # System authorization information auth --enableshadow --passalgo=sh ...

  3. sql server 多行数据合并成一列

    首先是源数据: ),cip.CheckIn_StartTime, )),cip.CheckIn_EndTime, )),cip.Rental_Price)) as content from Check ...

  4. 快速开发框架,及库存管理系统,基于easyui框架和C#语言MVC、EntityFrameWork、T4模板技术。

    快速开发框架,及库存管理系统,基于easyui框架和C#语言MVC.EntityFrameWork.T4模板技术. 产品界面如下图所示: 源码结构: 开放全部源码,如有需要请联系,QQ:1107141 ...

  5. JavaScript中push ,pop ,concat ,join方法

    push 方法 将新元素添加到一个数组中,并返回数组的新长度值. arrayObj.push([item1 [item2[. . . [itemN ]]]]) 说明 push 方法将以新元素出现的顺序 ...

  6. Java学习导航

    由于最近在系统的重新学习Java,为了便于日后复习,给个人博客中Java内容做一个目录. Java基础:Java虚拟机(JVM) Java基础:内存模型 Java基础:JVM垃圾回收算法 Java基础 ...

  7. 在python中单线程,多线程,多进程对CPU的利用率实测以及GIL原理分析

    首先关于在python中单线程,多线程,多进程对cpu的利用率实测如下: 单线程,多线程,多进程测试代码使用死循环. 1)单线程: 2)多线程: 3)多进程: 查看cpu使用效率: 开始观察分别执行时 ...

  8. PAT1136:A Delayed Palindrome

    1136. A Delayed Palindrome (20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue ...

  9. Activity的运行过程

    今天看到了这个关于Activity的过程这个方面的知识,之前我其实也是做过安卓项目的,也是有安卓开发的一定经验的,但是我发现之前似乎是知其然,而不知其所以然,之前来说只知道activity里的onCr ...

  10. SSIS 检查点

    在SSIS中,检查点实际上是一个记录系统,用于记录控制流中Task组件的执行状态.通过合理地配置Checkpoint,在Package运行出错之后,重新执行Package,可以跳过上一次已经成功执行的 ...