斯坦福CS224n课程作业
斯坦福CS224n作业一
softmax
作业要求如下:
解析:题目要求我们证明\(softmax\)函数具有常数不变性。
解答:对于\(x+c\)的每一维来说,有如下等式成立:
\[softmax(x+c)_{i}=\frac{e^{x_{i}+c}}{\sum_{j}e^{x_{j}+c}}=\frac{e^{x_{i}}*e^{c}}{\sum_{j}(e^{x_{j}}*e^{c})}=\frac{e^{x_{i}}*e^{c}}{\sum_{j}(e^{x_{j}})*e^{c}}=\frac{e^{x_{i}}}{\sum_{j}e^{x_{j}}}=softmax(x)_{i}\]
则可知\(softmax(x)=softmax(x+c)\)成立
Neural Network Basics
求解sigmoid函数梯度
作业要求如下:
解析:本题要求我们计算\(\sigma(x)\)函数的梯度,并用\(\sigma(x)\)表示结果
解答:\[\frac{\partial{(\sigma(x)})}{\partial{x}}=\frac{\partial{(\frac{1}{1+e^{-x}}})}{\partial{x}}\]
设\(a=1+e^{-x}\),应用链式法则可以得到:
\[\frac{\partial{(\sigma(x)})}{\partial{x}}=\frac{\partial{(\frac{1}{a}})}{\partial{x}}=-(\frac{1}{a})^{2}*\frac{\partial{a}}{\partial{x}}=-(\frac{1}{a})^{2}*e^{-x}*(-1)=\frac{e^{-x}}{(1+e^{-x})^{2}}\]
用\(\sigma(x)\)可以表示为\(\sigma(x)-\sigma(x)^{2}\)
softmax + 交叉熵的梯度推导
作业要求如下:
解析:本题给定了实际值\(y\),预测值\(\hat{y}\),以及softmax的输入向量\(\theta\),要求我们求解\(CE(y,\hat{y})\)对\(\theta\)的梯度
解答:
对于每个\(\theta_{i}\)来说,\(CE(y,\hat{y})\)对\(\theta_{i}\)的梯度如下所示:
可知,对于所有的i来说,\(CE(y,\hat{y})\)对\(\theta_{i}\)的梯度为\(\hat{y}-y\)。
三层神经网络的梯度推导
作业要求如下:
解析:本题要求推导\(CE(y,\hat{y})\)对输入\(x\)的梯度。
解答:
斯坦福CS224n课程作业的更多相关文章
- 斯坦福NLP课程 | 第1讲 - NLP介绍与词向量初步
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...
- 斯坦福NLP课程 | 第2讲 - 词向量进阶
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...
- 斯坦福NLP课程 | 第11讲 - NLP中的卷积神经网络
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...
- 斯坦福NLP课程 | 第12讲 - NLP子词模型
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...
- 斯坦福NLP课程 | 第15讲 - NLP文本生成任务
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...
- 斯坦福NLP课程 | 第18讲 - 句法分析与树形递归神经网络
作者:韩信子@ShowMeAI,路遥@ShowMeAI,奇异果@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/36 本文地址:http://www. ...
- 关于Coursera上的斯坦福机器学习课程的编程作业提交问题
学习Coursera上的斯坦福机器学习课程的时候,需要向其服务器提交编程作业,我遇到如下问题: 'Submission failed: unexpected error: urlread: Peer ...
- 斯坦福大学cs231n作业参考(中文版)
cs231n2016冬季课程作业完成,在原先的基础上进行了翻译和中文注释,同时增加了16之后版本的部分新作业文件,已经全部跑通,需要的欢迎自取. 斯坦福大学的 CS231n(全称:面向视觉识别的卷积神 ...
- Web编程基础--HTML、CSS、JavaScript 学习之课程作业“仿360极速浏览器新标签页”
Web编程基础--HTML.CSS.JavaScript 学习之课程作业"仿360极速浏览器新标签页" 背景: 作为一个中专网站建设出身,之前总是做静态的HTML+CSS+DIV没 ...
随机推荐
- win10右键添加在此处打开powershell
如图: 你想要的效果可能就是这个吧?但是找了好久没有找到方法?爸比告诉你,不需要修改任何东西, 解锁新姿势: 在文件夹空白处,按住shift同时鼠标右击,发现没??发现没!!!!
- (linux虚拟机)克隆得到的虚拟机修改网卡信息和IP地址,以及DNS
克隆得到的虚拟机,与原先的系统是一模一样的包括MAC地址和IP地址.需要修改成信息. 克隆完事之后,首先在 点击生成一个新的MAC地址.然后启动,登陆. vim /etc/udev/rules.d/7 ...
- 神奇的ASCⅡ码图
神奇的ASCⅡ码图 可能在网上也常见了asc2码图,但你知道是怎么做出来的吗?(总不可能是人一个一个字码进去的吧,当然,不排除有这种神人的可能
- Redis模块化基本介绍
概要 Redis Modules System基本概念 基本应用 参考资料 1. Redis Modules System基本概念 Redis Modules System是4.0出现一大改动点,使得 ...
- FOF 全面科普贴(转载)
看过那么多 FOF 科普贴,这份最全面!告转之~ 来自:https://xueqiu.com/7692591808/81852994 [ 导言 ] 看过那么多FOF科普贴,这份最全面! 昨天下午,青果 ...
- 微信小程序入门一
基本的准备工作 -知识储备 --基础:HTML+JS+CSS --进阶:React.Vue -工具安装 --工具由微信官方提供 ---下载地址:https://github.com/zce/weapp ...
- [Java算法分析与设计]--顺序栈的实现
在程序的世界,栈的应用是相当广泛的.其后进先出的特性,我们可以应用到诸如计算.遍历.代码格式校对等各个方面.但是你知道栈的底层是怎么实现的吗?现在跟随本篇文章我们来一睹它的庐山真面目吧. 首先我们先定 ...
- Java中浮点数的精度问题 【转】
当您在计算Money的时候,请看好了!!!要不损失了别后悔!!! 现象1: public static void main(String[] args) { System.out.println(0. ...
- Flask入门之Bootstrap介绍使用和Flask-Nav快速导航栏
一.Bootstrap Bootstrap,来自 Twitter,是目前最受欢迎的前端框架. Python中,同样可以使用Bootstrap. 1. 导入Bootstrap库 from flask_b ...
- arcEngine开发之查看属性表
这篇文章给出实现属性表功能的具体步骤,之后再对这些步骤中的代码进行分析. 环境准备 拖动TOCControl.MapControl控件到Form窗体上,然后拖动ContextMenuStrip控件至T ...