距离度量以及python实现(二)
接上一篇:http://www.cnblogs.com/denny402/p/7027954.html
7. 夹角余弦(Cosine)
也可以叫余弦相似度。 几何中夹角余弦可用来衡量两个向量方向的差异,机器学习中借用这一概念来衡量样本向量之间的差异。
(1)在二维空间中向量A(x1,y1)与向量B(x2,y2)的夹角余弦公式:
(2) 两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n)的夹角余弦
类似的,对于两个n维样本点a(x11,x12,…,x1n)和b(x21,x22,…,x2n),可以使用类似于夹角余弦的概念来衡量它们间的相似程度。
即:
余弦取值范围为[-1,1]。求得两个向量的夹角,并得出夹角对应的余弦值,此余弦值就可以用来表征这两个向量的相似性。夹角越小,趋近于0度,余弦值越接近于1,它们的方向更加吻合,则越相似。当两个向量的方向完全相反夹角余弦取最小值-1。当余弦值为0时,两向量正交,夹角为90度。因此可以看出,余弦相似度与向量的幅值无关,只与向量的方向相关。
import numpy as np
x=np.random.random(10)
y=np.random.random(10) #方法一:根据公式求解
d1=np.dot(x,y)/(np.linalg.norm(x)*np.linalg.norm(y)) #方法二:根据scipy库求解
from scipy.spatial.distance import pdist
X=np.vstack([x,y])
d2=1-pdist(X,'cosine')
两个向量完全相等时,余弦值为1,如下的代码计算出来的d=1。
d=1-pdist([x,x],'cosine')
8. 皮尔逊相关系数(Pearson correlation)
(1) 皮尔逊相关系数的定义
前面提到的余弦相似度只与向量方向有关,但它会受到向量的平移影响,在夹角余弦公式中如果将 x 平移到 x+1, 余弦值就会改变。怎样才能实现平移不变性?这就要用到皮尔逊相关系数(Pearson correlation),有时候也直接叫相关系数。
如果将夹角余弦公式写成:
表示向量x和向量y之间的夹角余弦,则皮尔逊相关系数则可表示为:
皮尔逊相关系数具有平移不变性和尺度不变性,计算出了两个向量(维度)的相关性。
在python中的实现:
import numpy as np
x=np.random.random(10)
y=np.random.random(10) #方法一:根据公式求解
x_=x-np.mean(x)
y_=y-np.mean(y)
d1=np.dot(x_,y_)/(np.linalg.norm(x_)*np.linalg.norm(y_)) #方法二:根据numpy库求解
X=np.vstack([x,y])
d2=np.corrcoef(X)[0][1]
相关系数是衡量随机变量X与Y相关程度的一种方法,相关系数的取值范围是[-1,1]。相关系数的绝对值越大,则表明X与Y相关度越高。当X与Y线性相关时,相关系数取值为1(正线性相关)或-1(负线性相关)。
9. 汉明距离(Hamming distance)
(1)汉明距离的定义
两个等长字符串s1与s2之间的汉明距离定义为将其中一个变为另外一个所需要作的最小替换次数。例如字符串“1111”与“1001”之间的汉明距离为2。
应用:信息编码(为了增强容错性,应使得编码间的最小汉明距离尽可能大)。
在python中的实现:
import numpy as np
from scipy.spatial.distance import pdist
x=np.random.random(10)>0.5
y=np.random.random(10)>0.5 x=np.asarray(x,np.int32)
y=np.asarray(y,np.int32) #方法一:根据公式求解
d1=np.mean(x!=y) #方法二:根据scipy库求解
X=np.vstack([x,y])
d2=pdist(X,'hamming')
10. 杰卡德相似系数(Jaccard similarity coefficient)
(1) 杰卡德相似系数
两个集合A和B的交集元素在A,B的并集中所占的比例,称为两个集合的杰卡德相似系数,用符号J(A,B)表示。
杰卡德相似系数是衡量两个集合的相似度一种指标。
(2) 杰卡德距离
与杰卡德相似系数相反的概念是杰卡德距离(Jaccard distance)。杰卡德距离可用如下公式表示:
杰卡德距离用两个集合中不同元素占所有元素的比例来衡量两个集合的区分度。
(3) 杰卡德相似系数与杰卡德距离的应用
可将杰卡德相似系数用在衡量样本的相似度上。
样本A与样本B是两个n维向量,而且所有维度的取值都是0或1。例如:A(0111)和B(1011)。我们将样本看成是一个集合,1表示集合包含该元素,0表示集合不包含该元素。
在python中的实现:
import numpy as np
from scipy.spatial.distance import pdist
x=np.random.random(10)>0.5
y=np.random.random(10)>0.5 x=np.asarray(x,np.int32)
y=np.asarray(y,np.int32) #方法一:根据公式求解
up=np.double(np.bitwise_and((x != y),np.bitwise_or(x != 0, y != 0)).sum())
down=np.double(np.bitwise_or(x != 0, y != 0).sum())
d1=(up/down) #方法二:根据scipy库求解
X=np.vstack([x,y])
d2=pdist(X,'jaccard')
11. 布雷柯蒂斯距离(Bray Curtis Distance)
Bray Curtis距离主要用于生态学和环境科学,计算坐标之间的距离。该距离取值在[0,1]之间。它也可以用来计算样本之间的差异。
样本数据:
计算:
在python中的实现:
import numpy as np
from scipy.spatial.distance import pdist
x=np.array([11,0,7,8,0])
y=np.array([24,37,5,18,1]) #方法一:根据公式求解
up=np.sum(np.abs(y-x))
down=np.sum(x)+np.sum(y)
d1=(up/down) #方法二:根据scipy库求解
X=np.vstack([x,y])
d2=pdist(X,'braycurtis')
距离度量以及python实现(二)的更多相关文章
- 概率分布之间的距离度量以及python实现(四)
1.f 散度(f-divergence) KL-divergence 的坏处在于它是无界的.事实上KL-divergence 属于更广泛的 f-divergence 中的一种. 如果P和Q被定义成空间 ...
- 距离度量以及python实现(一)
1. 欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式. (1)二维平面上两点a(x1,y1)与b(x2,y2)间 ...
- 概率分布之间的距离度量以及python实现(三)
概率分布之间的距离,顾名思义,度量两组样本分布之间的距离 . 1.卡方检验 统计学上的χ2统计量,由于它最初是由英国统计学家Karl Pearson在1900年首次提出的,因此也称之为Pearson ...
- 概率分布之间的距离度量以及python实现
1. 欧氏距离(Euclidean Distance) 欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式.(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧 ...
- ML 07、机器学习中的距离度量
机器学习算法 原理.实现与实践 —— 距离的度量 声明:本篇文章内容大部分转载于July于CSDN的文章:从K近邻算法.距离度量谈到KD树.SIFT+BBF算法,对内容格式与公式进行了重新整理.同时, ...
- 机器学习方法、距离度量、K_Means
特征向量 1.特征向量:以人为例,每个元素可能就对应这人的某些方面,这就是特征,例如:身高.年龄.性别.国际....2.特征工程:目的就是将现有数据中可作为信号的特征与那些仅是噪声的特征区分开来:当数 ...
- <转>从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经 ...
- 从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说: ...
- 使用 Python 生成二维码
在“一带一路”国际合作高峰论坛举行期间, 20 国青年投票选出中国的“新四大发明”:高铁.扫码支付.共享单车和网购.其中扫码支付指手机通过扫描二维码跳转到支付页面,再进行付款.这种新的支付方式,造就二 ...
随机推荐
- NewLife.Net——网络压测单机1.88亿tps
NewLife.Net压力测试,峰值4.2Gbps,50万pps,消息大小24字节,消息处理速度1.88亿tps! 共集合20台高配ECS参与测试,主服务器带宽6Gbps.100万pps,16核心64 ...
- leetCode刷题(找到两个数组拼接后的中间数)
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two ...
- 数据准备<3>:数据预处理
数据预处理是指因为算法或者分析需要,对经过数据质量检查后的数据进行转换.衍生.规约等操作的过程.整个数据预处理工作主要包括五个方面内容:简单函数变换.标准化.衍生虚拟变量.离散化.降维.本文将作展开介 ...
- 2、原生js实现轮播图特效
很多很多网站经常会用到一个特效,那就是轮播图,对于日新月异的前端技术来说其实就是一个框架一个接口的事,但轮播的原理是什么?用最原始的javascript来写又是怎样的呢?本人是一枚菜鸟,这篇文章就当做 ...
- spring boot之从零开始开发自己的网站
概述 首先要感谢两位大神,该项目的想法来源自tale和MyBlog,本项目的想法. 做了一些改造,增加了一些功能和一些代码的重构,并且更换了博客主题. 关于项目,对于开发的练手项目,能够工程化,严谨一 ...
- 对于 Netty ByteBuf 的零拷贝(Zero Copy) 的理解
此文章已同步发布在我的 segmentfault 专栏. 根据 Wiki 对 Zero-copy 的定义: "Zero-copy" describes computer opera ...
- Notify和NotifyAll的区别?
Notify和NotifyAll都是用来对对象进行状态改变的方式,只是他们的作用域不太一样,从字面上就能看的出来,当对象被上锁之后,当其他的方法要去访问该对象中的数据,就需要该对象对其进行解锁,当然, ...
- Android 属性动画(Property Animation) 完全解析 (下)
转载请标明出处:http://blog.csdn.net/lmj623565791/article/details/38092093 上一篇Android 属性动画(Property Animatio ...
- ASP.NET Core Identity Hands On(1)——Identity 初次体验
ASP.NET Core Identity是用于构建ASP.NET Core Web应用程序的成员资格系统,包括成员资格.登录和用户数据存储 这是来自于 ASP.NET Core Identity 仓 ...
- Nodejs.Electron(Nodejs的图形界面开发)安装和试用
# 克隆示例项目的仓库 git clone https://github.com/electron/electron-quick-start # 进入这个仓库 cd electron-quick-st ...