上一道例题

我们来介绍第二类Stirling数

定义

第二类Stirling数实际上是集合的一个拆分,表示将n个不同的元素拆分成m个集合的方案数,记为

或者

。和第一类Stirling数不同的是,集合内是不考虑次序的,而圆排列是有序的。常常用于解决组合数学中几类放球模型。描述为:将n个不同的球放入m个无差别的盒子中,要求盒子非空,有几种方案?

第二类Stirling数要求盒子是无区别的,所以可以得到其方案数公式:  
              

递推式

第二类Stirling数的推导和第一类Stirling数类似,可以从定义出发考虑第n+1个元素的情况,假设要把n+1个元素分成m个集合则分析如下:
(1)如果n个元素构成了m-1个集合,那么第n+1个元素单独构成一个集合。方案数

(2)如果n个元素已经构成了m个集合,将第n+1个元素插入到任意一个集合。方案数 m*S(n,m) 。
综合两种情况得:

应用举例

第二类Stirling数主要是用于解决组合数学中的几类放球模型。主要是针对于球之前有区别的放球模型:
(1)n个不同的球,放入m个无区别的盒子,不允许盒子为空。
方案数:

。这个跟第二类Stirling数的定义一致。

(2)n个不同的球,放入m个有区别的盒子,不允许盒子为空。
方案数:

。因盒子有区别,乘上盒子的排列即可。

(3)n个不同的球,放入m个无区别的盒子,允许盒子为空。
方案数:

。枚举非空盒的数目便可。

(4)n个不同的球,放入m个有区别的盒子,允许盒子为空。
①方案数:

。同样可以枚举非空盒的数目,注意到盒子有区别,乘上一个排列系数。

②既然允许盒子为空,且盒子间有区别,那么对于每个球有m中选择,每个球相互独立。有方案数:

上述式子可以应用于第二类Stirling数通项的求解。

通项公式

 
 
 

[总结] 第二类Stirling数的更多相关文章

  1. lightOJ 1326 Race(第二类Stirling数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1326 题意:有n匹马赛跑.问有多少种不同的排名结果.可以有多匹马的排名相同. 思路:排 ...

  2. 第二类Stirling数

    第二类斯特林数 第二类Stirling数:S2(p, k) 1.组合意义:第二类Stirling数计数的是把p个互异元素划分为k个非空集合的方法数 2.递推公式: S2(0, 0) = 1 S2(p, ...

  3. [BZOJ5093]图的价值(NTT+第二类Stirling数)

    5093: [Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 250  Solved: 130[Submit][Sta ...

  4. LightOJ 1326 – Race 第二类Stirling数/

    简单的模板题. 题意:问n匹马出现的不同排名数. 题解:可以使用DP,本质上还是第二类Stirling数(隔板法) #include <stdio.h> #include <iost ...

  5. HDU 2643 Rank:第二类Stirling数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2643 题意: 有n个个选手参赛,问排名有多少种情况(可以并列). 题解: 简化问题: 将n个不同的元素 ...

  6. 第二类Stirling数初探 By cellur925

    上午noi.ac崩崩崩了,栽在组合数学上,虽说最后在辰哥&Chemist的指导下A掉了此题,也发现自己组合数学太弱了qwq. 在luogu上找题,结果找到了一个第二类斯特林数的题(还是双倍经验 ...

  7. 自然数幂和——第一类Stirling数和第二类Stirling数

    第一类Stirling数 首先设 $$S_k(n)=\sum_{i=0}^ni^k$$ 根据第一类斯特林数的定义(P是排列数,C是组合数,s是Stirling) $$C_n^k={P_n^k\over ...

  8. (转) [组合数学] 第一类,第二类Stirling数,Bell数

    一.第二类Stirling数 定理:第二类Stirling数S(p,k)计数的是把p元素集合划分到k个不可区分的盒子里且没有空盒子的划分个数. 证明:元素在哪些盒子并不重要,唯一重要的是各个盒子里装的 ...

  9. 第一类和第二类Stirling数

    做了老是忘…… 实际问题: 找维基百科.百度百科…… 第一类Stirling数 n个元素构成m个圆排列 S(n,m)=S(n-1,m-1)+(n-1)*S(n-1,m) 初始 S(0,0)=1 S(n ...

随机推荐

  1. CAN总线知识总结

    CAN总线知识整理 一.特点 二.CAN物理层 隐性(逻辑1),显性(逻辑0). 三.CAN数据链路层 3.1通信机制 3.2数据帧 3.3错误帧 3.4其它帧格式 3.5位定时与同步

  2. 微信Token小识

    在调用自定义菜单接口的时候,调用接口 https://api.weixin.qq.com/cgi-bin/menu/create?access_token=ACCESS_TOKEN返回: " ...

  3. Spring注解简介

    提供了基于注解(Annotation-based)的配置,我们可以通过注解的方式来完成注入依赖. 1. 使用注解方式配置 我们需要修改spring配置文件的头信息,修改部分红色标注,如下: <c ...

  4. JS分号 惹的坑

    JS中会自动清除句子和句子之间的空格以及tab缩进, 这样就可以允许用户编写的代码更加随性和更加可读, 在该行代码解析的时候如果该行代码可以解析, 就会在该行代码最后自动填写分号,如果该行代码无法解析 ...

  5. 【前端】Vue2全家桶案例《看漫画》之一、添加四个导航页

    转载请注明出处:http://www.cnblogs.com/shamoyuu/p/vue_vux_app_1.html 项目github地址:https://github.com/shamoyuu/ ...

  6. ubuntu下串口编程备忘

    弄了一下串口,一个小问题多折腾了下,备忘.软件环境:zl@zhanglong:~$ cat /etc/lsb-release DISTRIB_ID=UbuntuDISTRIB_RELEASE=12.0 ...

  7. Error Code: 1305. FUNCTION student.rand_string does not exist

    1.错误描述 13:52:42 call new_procedure Error Code: 1305. FUNCTION student.rand_string does not exist 0.0 ...

  8. MySQL语法大全整理的自学笔记

    select * from emp; #注释 #--------------------------- #----命令行连接MySql--------- #启动mysql服务器 net start m ...

  9. Redis进阶实践之十五 Redis-cli命令行工具使用详解第二部分(结束)

    一.介绍           今天继续redis-cli使用的介绍,上一篇文章写了一部分,写到第9个小节,今天就来完成第二部分.话不多说,开始我们今天的讲解.如果要想看第一篇文章,地址如下:http: ...

  10. devDependencies和dependencies的版本写法

    devDependencies和dependencies的版本写法 指定版本:比如1.2.2,遵循大版本.次要版本.小版本的格式规定,安装时只安装指定版本. 波浪号(tilde)+指定版本:比如~1. ...