视频学习来源

https://www.bilibili.com/video/av40787141?from=search&seid=17003307842787199553

笔记

环境为 anaconda + python3.7

Keras 线性回归

import keras

from keras.layers import Dense

from keras.models import Sequential

import numpy as np

import matplotlib.pyplot as plt

#设置x的数据值

x_data=np.random.rand(100)

np.random.rand(d0,d1,d2……dn)
返回服从“0~1”均匀分布的随机样本值。随机样本取值范围是[0,1)。 

np.random.randn()函数

可以返回服从标准正态分布的随机样本值。
#设置噪声

noise=np.random.normal(0,0.01,x_data.shape)

numpy.random.normal(loc=0.0, scale=1.0, size=None)

loc:均值

scale:float  标准差

size:长度。

#构造函数

y_data=x_data*0.1+0.2+noise

#画出函数

plt.scatter(x_data,y_data) #scatter散点图

plt.show()

model=Sequential() #建立顺序模型序列

model.add(Dense(units=1,input_dim=1))#输入维度为1,输出维度为1 

添加一个网络层 输入维度为1,输出维度为1 

model.compile(optimizer='sgd',loss='mse') #设置SGD优化模型,

#训练,迭代步为3001次。

for step in range(3001):

    cost=model.train_on_batch(x_data,y_data) #batch 为每次训练的批次

    if step%500 ==0:

        print('cost:',cost) #每500次输出一次

#打印权值和偏置值

w,b=model.layers[0].get_weights()

print("w:",w,"b:",b)

#生成预测值

y_pred=model.predict(x_data)

plt.scatter(x_data,y_data)

plt.plot(x_data,y_pred,'r-',lw=3) #红色,长度为3

plt.show()

(一) Keras 一元线性回归的更多相关文章

  1. 回归分析法&一元线性回归操作和解释

    用Excel做回归分析的详细步骤 一.什么是回归分析法 "回归分析"是解析"注目变量"和"因于变量"并明确两者关系的统计方法.此时,我们把因 ...

  2. R语言解读一元线性回归模型

    转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体 ...

  3. 一元线性回归模型与最小二乘法及其C++实现

    原文:http://blog.csdn.net/qll125596718/article/details/8248249 监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等), ...

  4. R语言 一元线性回归

    #一元线性回归的基本步骤#1.载入数据 给出散点图 x<-c(0.10,0.11,0.12,0.13,0.14,0.15,0.16,0.17,0.18,0.20,0.21,0.23) y< ...

  5. machine learning 之 导论 一元线性回归

    整理自Andrew Ng 的 machine learnig 课程 week1. 目录: 什么是机器学习 监督学习 非监督学习 一元线性回归 模型表示 损失函数 梯度下降算法 1.什么是机器学习 Ar ...

  6. R语言做一元线性回归

    只有两个变量,做相关性分析,先来个一元线性回归吧 因为未处理的x,y相关性不显著,于是用了ln(1+x)函数做了个处理(发现大家喜欢用ln,log,lg,指数函数做处理),处理完以后貌似就显著了..虽 ...

  7. Python实现——一元线性回归(梯度下降法)

    2019/3/25 一元线性回归--梯度下降/最小二乘法_又名:一两位小数点的悲剧_ 感觉这个才是真正的重头戏,毕竟前两者都是更倾向于直接使用公式,而不是让计算机一步步去接近真相,而这个梯度下降就不一 ...

  8. 梯度下降法及一元线性回归的python实现

    梯度下降法及一元线性回归的python实现 一.梯度下降法形象解释 设想我们处在一座山的半山腰的位置,现在我们需要找到一条最快的下山路径,请问应该怎么走?根据生活经验,我们会用一种十分贪心的策略,即在 ...

  9. pytorch和tensorflow的爱恨情仇之一元线性回归例子(keras插足啦)

    直接看代码: 一.tensorflow #tensorflow import tensorflow as tf import random import numpy as np x_data = np ...

随机推荐

  1. 浅谈unity中gamma空间和线性空间

    转载请标明出处:http://www.cnblogs.com/zblade/ 一.概述 很久没有写文章了,今天写一篇对gamma空间和线性空间的个人理解总结,在查阅和学习了各个资料后,算是一个个人笔记 ...

  2. sympy科学计算器

    SymPy库常用函数 简介 本文抄于https://www.cnblogs.com/baby123/p/6296629.html SymPy是一个符号计算的Python库.它的目标是成为一个全功能的计 ...

  3. 使用myeclipse修改项目映射路径

    这里主要做下记录,找到myeclipse中对项目路径进行查看以及修改的地址 如图 点击项目右键 实例url:http://localhost:8080/myFirstServlet/one 对应路径中 ...

  4. Github项目推荐-图神经网络(GNN)相关资源大列表

    文章发布于公号[数智物语] (ID:decision_engine),关注公号不错过每一篇干货. 转自 | AI研习社 作者|Zonghan Wu 这是一个与图神经网络相关的资源集合.相关资源浏览下方 ...

  5. 瑞芯微RKnanC芯片处理器介绍

    RKnanC是一种低成本.低功耗.高效率的数字多媒体芯片,它是基于ARM的低功耗处理器结构和硬件加速器.它是专为便携式音频产品应用,如MP3播放器等. RKnanC可以支持各种音频标准的解码,如MP3 ...

  6. android:layout_weight属性详解

    weight:重量.权重. 当我们给一个view设置了android:layout_weight属性,意味着赋予它话语权,常规思维就是谁的weight大,谁说了算(空间占比大). 下面我们来看下具体的 ...

  7. SQLServer之删除数据库架构

    删除数据库架构注意事项 要删除的架构不能包含任何对象. 如果架构包含对象,则 DROP 语句将失败. 可以在 sys.schemas 目录视图中查看有关架构的信息. 要求对架构具有 CONTROL 权 ...

  8. winform 实现类似于TrackBar的自定义滑动条,功能更全

    功能很全,随便列几个 1.可以设置滑块的大小,边框颜色.背景色.形状等等吧 2.可以设置轨道的方向.边框颜色.背景色.阴影等等 ... 效果图: 下载链接https://download.csdn.n ...

  9. 第二章.python入门

    2.1环境的安装 解释器:py2和py3 添加环境变量的作用:便于找到python解释器 开发工具:pycharm 2.2编码 2.2.1编码基础 ascii:只表示英文,8位表示一个元素,pytho ...

  10. Python爬虫之ip代理池

    可能在学习爬虫的时候,遇到很多的反爬的手段,封ip 就是其中之一. 对于封IP的网站.需要很多的代理IP,去买代理IP,对于初学者觉得没有必要,每个卖代理IP的网站有的提供了免费IP,可是又很少,写了 ...