第八篇:支持向量机 (Support Vector Machine)
前言
本文讲解如何使用R语言中e1071包中的SVM函数进行分类操作,并以一个关于鸢尾花分类的实例演示具体分类步骤。
分析总体流程
1. 载入并了解数据集;
2. 对数据集进行训练并生成模型;
3. 在此模型之上调用测试数据集进行分类测试;
4. 查看分类结果;
5. 进行各种参数的调试并重复2-4直至分类的结果让人满意为止。
参数调整策略
综合来说,主要有以下四个方面需要调整:
1. 选择合适的核函数;
2. 调整误分点容忍度参数cost;
3. 调整各核函数的参数;
4. 调整各样本的权重。
其中,对于特征比较多的情况一般用非线性核,比如高斯核。高斯核的特点是参数多,需要不断调试参数才能理想的效果。而线性核没什么参数可设置,一般适用于特征比较少的情况。
关于各核函数的参数,则一般是通过试探法来确定。最好可以将不同样本权重模型,不同核函数参数下的分类准确率做成一张可视化报表,以便于方案确定。
关于3的选择,一般可以通过MDS的可视化图,看有哪几个分类是纠缠不清的,然后就加大这两个分类的样本权重。
鸢尾花分类分析 - 使用支持向量机(SVM)
1. 安装SVM分析所需包:e1071
2. 载入并了解数据集:
可以看出,这个数据集比较理想化,避免了繁琐的数据预处理过程,非常适合作为案例讲解。
3. 建立SVM模型:
这个模型变量相当于是训练库,下面查看该模型的信息:
其中,SVM类型是C-classification,核函数是高斯核,cost是误分点容忍度参数,gamma是核函数参数。他们的具体含义请参考函数手册。
4. 利用该模型进行预测
5. 查看预测效果:
可见,有两个类型似乎混淆了。那怎么办?还有,如果变量多,我如何观察出哪几个变量纠缠不清呢?下面先来解决这个问题。
6. 使用MDS技术查看各变量分类情况
MDS技术可以根据所有样本之间的距离,根据各个变量之间距离不变的设定,将维度降低到两维。一般来说,它是用来分析整体分类的一个态势的:
plot(cmdscale(dist(iris[,-5])), col = c("blue", "green", "orange")[as.integer(iris[,5])], pch = c("o", "+")[1:150 %in% model$index+1])
legend(2, -0.7, c("setosa", "versicolor", "virginica"), col = c("blue", "green", "orange"), lty = 1)
显示效果如下:
显然,后两个分类有点混淆。
7. 调整各样本权重系数:
由上图可知,这样的模型产生了更好的分类效果。
小结
1. 本例中的场景比较简单,故未做复杂的参数调整。在实际项目中往往需要对方方面面都进行调整。
2. 虽然SVM在做了标准化后效果更好,但是不用手动标准化。因为SVM函数会自动进行标准化。
3. 对于维度比较少的情况,直接用线性核就好了。
4. SVM是综合指标最好的分类器,但是有它的局限之处,那就是容易过拟合。因此降维工作一定要做好。
第八篇:支持向量机 (Support Vector Machine)的更多相关文章
- 支持向量机 support vector machine
SVM(support Vector machine) (1) SVM(Support Vector Machine)是从瓦普尼克(Vapnik)的统计学习理论发展而来的,主要针对小样本数据进行学习. ...
- 支持向量机(Support Vector Machine)-----SVM之SMO算法(转)
此文转自两篇博文 有修改 序列最小优化算法(英语:Sequential minimal optimization, SMO)是一种用于解决支持向量机训练过程中所产生优化问题的算法.SMO由微软研究院的 ...
- 机器学习(八)--------支持向量机 (Support Vector Machines)
与逻辑回归和神经网络相比,支持向量机或者简称 SVM,更为强大. 人们有时将支持向量机看作是大间距分类器. 这是我的支持向量机模型代价函数 这样将得到一个更好的决策边界 理解支持向量机模型的做法,即努 ...
- 支持向量机(Support Vector Machine,SVM)
SVM: 1. 线性与非线性 核函数: 2. 与神经网络关系 置信区间结构: 3. 训练方法: 4.SVM light,LS-SVM: 5. VC维 u-SVC 与 c-SVC 区别? 除参数不同外, ...
- 支持向量机SVM(Support Vector Machine)
支持向量机(Support Vector Machine)是一种监督式的机器学习方法(supervised machine learning),一般用于二类问题(binary classificati ...
- 6. support vector machine
1. 了解SVM 1. Logistic regression 与SVM超平面 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些数据分成两类.如果用x表示数据点,用y表示类别( ...
- 斯坦福第十二课:支持向量机(Support Vector Machines)
12.1 优化目标 12.2 大边界的直观理解 12.3 数学背后的大边界分类(可选) 12.4 核函数 1 12.5 核函数 2 12.6 使用支持向量机 12.1 优化目标 到目前为 ...
- 机器学习课程-第7周-支持向量机(Support Vector Machines)
1. 优化目标 在监督学习中,许多学习算法的性能都非常类似,因此,重要的不是你该选择使用学习算法A还是学习算法B,而更重要的是,应用这些算法时,所创建的大量数据在应用这些算法时,表现情况通常依赖于你的 ...
- 5. support vector machine
1. 了解SVM 1. Logistic regression回顾 Logistic regression目的是从特征中学习出一个0/1二分类模型,而这个模型是将特性的线性组合作为自变量,由于自变量的 ...
随机推荐
- Animation Physics and The Realization Of Animation In Browsers
Animation Physics Background With the development of computer science technology, people are facing ...
- "abc123 ,def456",反转字母,其他位置不变
"abc123 ,def456",反转字母,其他位置不变. 无意间看到个有意思的面试题,忽然来了兴趣想着来做一下. 操作字符串用正则的效率比较高,但第一反应还是用原生来操作.下面说 ...
- 响应式框架Bootstrap
概念:Bootstrap将会根据你的屏幕的大小来调整HTML元素的大小 -- 强调 响应式设计的概念. 通过响应式设计,你无需再为你的网站设计一个手机版的.它在任何尺寸的屏幕上看起来都会不错. Boo ...
- 3、flask之基于DBUtils实现数据库连接池、本地线程、上下文
本篇导航: 数据库连接池 本地线程 上下文管理 面向对象部分知识点解析 1.子类继承父类__init__的三种方式 class Dog(Animal): #子类 派生类 def __init__(se ...
- 为何要部署IPV6
·IPv4的局限性: 1.地址空间的局限性:IP地址空间的危机由来已久,并正是升级到IPv6的主要动力. 2.安全性:IPv4在网络层没有安全性可言,安全性一直被认为是由网络层以上的层负责. ...
- 一致性哈希(附带C++实现)
在分布式集群中,对机器的添加删除,或者机器故障后自动脱离集群这些操作是分布式集群管理最基本的功能.如果采用常用的hash(object)%N算 法,那么在有机器添加或者删除后,就需要大范围的移动原有数 ...
- Yii2框架ACF(AccessControl Filter)的使用
AccessControl其实也就是 yii\filters\AccessControl Filter, 我们下面简写为 ACF 作为描述. ACF,访问控制过滤器,适用于简单的验证,面对的对象便是控 ...
- NumPy学习_00 ndarray的创建
1.使用array()函数创建数组 参数可以为:单层或嵌套列表:嵌套元组或元组列表:元组或列表组成的列表 # 导入numpy库 import numpy as np # 由单层列表创建 a = np. ...
- 关于C语言文件操作
关于C语言的文件操作之前我也写过一篇博客来介绍,但是当时写的很不全面,只是简单的使用了一下 ,今天再从新学习一下. 1.文件的写 首先还是先看一个简单的例子: include<stdio.h&g ...
- SpringMvc Json LocalDateTime 互转,form urlencoded @ModelAttribute 转换
JDK8 的LocalDate 系列日期API ,比Date 或者 Calendar 都好用很多,但是在SpringMvc 自动装配会有点小问题 会导致抛出类似异常 default message [ ...