Java实现堆的封装,进行插入,调整,删除堆顶以完成堆排序实例
简介
堆对于排序算法是一个比较常用的数据结构,下面我就使用Java语言来实现这一算法
首先,我们需要知道堆的数据结构的形式,其实就是一个特殊的二叉树。但是这个二叉树有一定的特点,除了是完全二叉树以外,对于最大堆而言,堆顶元素的值是最大的,而且对于堆的每一个子树也是一个小一号的最大堆;同样对于最小堆,性质相反就可以了。
我以最大堆为例:
要实现堆的初始化操作,就是先按照给定的元素创建一棵完全二叉树,然后从末尾节点进行不断地调整的过程。调整的原则是:比较要进行放置的当前节点与其父节点的数值的大小,若要进行放置的当前节点的值小于其父节点,那么当前节点所在位置符合最大堆的定义,要进行放置的当前节点放在此处是比较合适的;如果要进行放置的当前节点的值大于其父节点的值,那说明放在当前节点是不合适的,那么就需要将当前节点的值与其父节点的值进行交换,然后原父节点变为新的要进行放置的当前节点。循环比较;终止条件就是当前节点没有父节点,但此时的调整也许并没有结束,我们只需要让堆顶元素为要插入的值即可。至此,最大堆的插入和调整过程结束。
代码如下:
public boolean insert(int x){
if(currentSize==MAXSIZE){
System.out.println("Sorry,this heap is full!");
return false;
}
//如果堆不满的话
currentSize++;
int flag=currentSize-1;
while(flag>0){
int parent=(flag-1)/2;
if(heap[parent]>x){
heap[flag]=x;
return true;
}else{
heap[flag]=heap[parent];
flag=parent;
}
}
heap[0]=x;
return true;
}
siftDown过程:给定一个节点的位置,对其进行调整,使之符合最大堆的定义,这个过程就是我们要实现的过程。调整原则如下:
对于当前节点i而言,其孩子节点的下标满足左节点为2*i+1,右节点为2*i+2;在进行调整的过程中,只需要比较当前节点与其子节点中最大的节点进行调整即可。具体的代码逻辑可在代码中看到:
public void siftDown(int flag){
int want=flag;
int x=heap[flag];
while(want<currentSize){
int lChild=2*want+1;
int rChild=2*want+2;
int MAXChildNumber;
if(lChild>currentSize){ //没有孩子节点
heap[want]=x;
}else{ //有两个孩子节点
if(lChild<currentSize){
MAXChildNumber=heap[lChild]>heap[rChild]?lChild:rChild;
}else{
MAXChildNumber=lChild;
}
if(heap[MAXChildNumber]<x){
heap[want]=x;return;
}else{
heap[want]=heap[MAXChildNumber];
want=MAXChildNumber;
}
}
}
}
堆顶元素的删除,我们对堆的操作基本桑就是为了获得这个堆的最值,那么毫无疑问,堆顶元素就是我们要研究的对象。下面是代码逻辑:
public int deleteTop(){
if(currentSize<0){
System.out.println("Sorry, this heap is empty!");
return -1;
}
int target=heap[0];
int substitute=heap[currentSize-1];
this.currentSize--;
heap[0]=substitute;
siftDown(0);
return target;
}
下面是详细的代码
package test.maxHeap;
public class MaxHeap {
private int []heap ;
private int currentSize;
private static int MAXSIZE ;
public MaxHeap(int n){
heap=new int[n];
currentSize=0;
MAXSIZE=n;
}
public boolean insert(int x){
if(currentSize==MAXSIZE){
System.out.println("Sorry,this heap is full!");
return false;
}
//如果堆不满的话
currentSize++;
int flag=currentSize-1;
while(flag>0){
int parent=(flag-1)/2;
if(heap[parent]>x){
heap[flag]=x;
return true;
}else{
heap[flag]=heap[parent];
flag=parent;
}
}
heap[0]=x;
return true;
}
public void siftDown(int flag){
int want=flag;
int x=heap[flag];
while(want<currentSize){
int lChild=2*want+1;
int rChild=2*want+2;
int MAXChildNumber;
if(lChild>currentSize){ //没有孩子节点
heap[want]=x;
}else{ //有两个孩子节点
if(lChild<currentSize){
MAXChildNumber=heap[lChild]>heap[rChild]?lChild:rChild;
}else{
MAXChildNumber=lChild;
}
if(heap[MAXChildNumber]<x){
heap[want]=x;return;
}else{
heap[want]=heap[MAXChildNumber];
want=MAXChildNumber;
}
}
}
}
public int deleteTop(){
if(currentSize<0){
System.out.println("Sorry, this heap is empty!");
return -1;
}
int target=heap[0];
int substitute=heap[currentSize-1];
this.currentSize--;
heap[0]=substitute;
siftDown(0);
return target;
}
}
好了,编码已经完成。下面我们就要检验一下是否正确吧。
public class MaxHeapTest {
public static void main(String []args){
MaxHeap maxHeap=new MaxHeap(7);
for(int i=1;i<=7;i++){
maxHeap.insert(i);
}
for(int i=0;i<7;i++){
System.out.print(maxHeap.deleteTop()+" ");
}
System.out.println("\n");
}
}
接下来是程序的运行结果:
7 6 5 4 3 2 1
//可见,对于最大堆,删除堆顶的操作实际上就是完成了对堆的排序任务,也证明了我们的代码是正确的
总结:
堆的操作很重要,我们更要学会对于堆的应用,这样的数据结构才能使得程序的运行更加的高效和流畅。对于最小堆,我们只需要在插入方法,sift方法内稍加修改即可(也就是将值的代销变换关系进行调整)。这样就同样能实现最小堆的创建和相关的操作了。
代码中可能存在不太恰当地地方,希望大家予以批评指正,期待与你们共同进步!
Java实现堆的封装,进行插入,调整,删除堆顶以完成堆排序实例的更多相关文章
- Java 获取Word中的所有插入和删除修订
在 Word 文档中启用跟踪更改功能后,会记录文档中的所有编辑行为,例如插入.删除.替换和格式更改.对插入或删除的内容,可通过本文中介绍的方法来获取. 引入Jar 方法1 手动引入:将 Free Sp ...
- 数据结构Java实现03----单向链表的插入和删除
文本主要内容: 链表结构 单链表代码实现 单链表的效率分析 一.链表结构: (物理存储结构上不连续,逻辑上连续:大小不固定) 概念: 链式存储结构是基于指针实现的.我们把一个数据 ...
- 数据结构Java实现02----单向链表的插入和删除
文本主要内容: 链表结构 单链表代码实现 单链表的效率分析 一.链表结构: (物理存储结构上不连续,逻辑上连续:大小不固定) 概念: 链式存储结构是基于指针实现的.我们把一个数据 ...
- Java实现 LeetCode 380 常数时间插入、删除和获取随机元素
380. 常数时间插入.删除和获取随机元素 设计一个支持在平均 时间复杂度 O(1) 下,执行以下操作的数据结构. insert(val):当元素 val 不存在时,向集合中插入该项. remove( ...
- 大话数据结构(五)(java程序)——顺序存储结构的插入与删除
获得元素操作 对于线性表的顺序存储结构来说,我们要实现getElement操作,即将线性表的第i个位置元素返回即可 插入操作 插入算法思路: 1.如果插入位置不合理,抛出异常 2.如果插入表的长度大于 ...
- Java实现二叉搜索树的插入、删除
前置知识 二叉树的结构 public class TreeNode { int val; TreeNode left; TreeNode right; TreeNode() { } TreeNode( ...
- C++实现最小堆及插入,调整顺序,删除堆顶元素的操作
上次用Java实现了最大堆的封装,这次就来写一下最小堆的实现吧 插入函数的思路: 向堆中插入元素有两种情况,一种是堆为空,那么就让插入值作为根节点即可:另一种是堆不为空,那么此时就要进行判断当前节点与 ...
- 堆+建堆、插入、删除、排序+java实现
package testpackage; import java.util.Arrays; public class Heap { //建立大顶堆 public static void buildMa ...
- java基础1.0::Java面向对象、面向对象封装、抽象类、接口、static、final
一.前言 一直以来都是拿来主义,向大神学习,从网上找资料,现在就把自己在工作中和学习中的所理解的知识点写出来,好记星不如烂笔头,一来可以作为笔记自己温习,二来也可以给走在求学之路的同学们一点参考意见, ...
随机推荐
- linux下的静态库与动态库详解
静态库 先说说我们为什么需要库? 当有些代码我们大量会在程序中使用比如(scanf,printf等)这些函数我们需要在程序中频繁使用,于是我们就把这些代码编译为库文件,在需要使用时我们直接链接即可. ...
- docker volume创建、备份、nfs存储
docker存储volume #环境 centos7.4 , Docker version 17.12.0-ce docker volume创建.备份.nfs存储 #docker volume 数据存 ...
- Spring动态切换多数据源解决方案
Spring动态配置多数据源,即在大型应用中对数据进行切分,并且采用多个数据库实例进行管理,这样可以有效提高系统的水平伸缩性.而这样的方案就会不同于常见的单一数据实例的方案,这就要程序在运行时根据当时 ...
- Android自定义View(RollWeekView-炫酷的星期日期选择控件)
转载请标明出处: http://blog.csdn.net/xmxkf/article/details/53420889 本文出自:[openXu的博客] 目录: 1分析 2定义控件布局 3定义Cus ...
- Scheme call/cc 研究
目前尚不清楚实质,但已经能够从形式上理解它的某些好处,有个很简单的连乘函数可以说明: 为了展示究竟发生了什么,我包装了下乘法函数,将其变为mul. 我们将比较product和xproduct的区别. ...
- Dynamics CRM2016 Web API之通过实体的primary key查询记录(二)
继续接上篇,还是通过primary key来查询数据,本篇介绍两个我个人比较喜欢的查询方式,一个是查询单个字段,一个是查询lookup关联实体中的属性字段. 先来看如何查询单个字段,只需要在url的最 ...
- springMVC源码分析--HandlerInterceptor拦截器调用过程(二)
在上一篇博客springMVC源码分析--HandlerInterceptor拦截器(一)中我们介绍了HandlerInterceptor拦截器相关的内容,了解到了HandlerInterceptor ...
- x264源代码简单分析:概述
===================================================== H.264源代码分析文章列表: [编码 - x264] x264源代码简单分析:概述 x26 ...
- JAVA面向对象-----instanceof 关键字
instanceof 关键字 1:快速演示instanceof Person p=new Person(); System.out.println( p instanceof Person); 2:i ...
- Android简易实战教程--第二十话《通过广播接收者,对拨打电话外加ip号》
没睡着觉,起来更篇文章吧哈哈!首先祝贺李宗伟击败我丹,虽然我是支持我丹的,但是他也不容易哈哈,值得尊敬的人!切入正题:这一篇来介绍个自定义广播接收者. 通常我们在外拨电话的时候,一般为使用网络电话.如 ...