简介


堆对于排序算法是一个比较常用的数据结构,下面我就使用Java语言来实现这一算法


首先,我们需要知道堆的数据结构的形式,其实就是一个特殊的二叉树。但是这个二叉树有一定的特点,除了是完全二叉树以外,对于最大堆而言,堆顶元素的值是最大的,而且对于堆的每一个子树也是一个小一号的最大堆;同样对于最小堆,性质相反就可以了。


我以最大堆为例:

要实现堆的初始化操作,就是先按照给定的元素创建一棵完全二叉树,然后从末尾节点进行不断地调整的过程。调整的原则是:比较要进行放置的当前节点与其父节点的数值的大小,若要进行放置的当前节点的值小于其父节点,那么当前节点所在位置符合最大堆的定义,要进行放置的当前节点放在此处是比较合适的;如果要进行放置的当前节点的值大于其父节点的值,那说明放在当前节点是不合适的,那么就需要将当前节点的值与其父节点的值进行交换,然后原父节点变为新的要进行放置的当前节点。循环比较;终止条件就是当前节点没有父节点,但此时的调整也许并没有结束,我们只需要让堆顶元素为要插入的值即可。至此,最大堆的插入和调整过程结束。

代码如下:

public boolean insert(int x){
        if(currentSize==MAXSIZE){
            System.out.println("Sorry,this heap is full!");
            return false;
        }
        //如果堆不满的话
        currentSize++;
        int flag=currentSize-1;
        while(flag>0){
            int parent=(flag-1)/2;
            if(heap[parent]>x){
                heap[flag]=x;
                return true;
            }else{
                heap[flag]=heap[parent];
                flag=parent;
            }
        }
        heap[0]=x;
        return true;
    }

siftDown过程:给定一个节点的位置,对其进行调整,使之符合最大堆的定义,这个过程就是我们要实现的过程。调整原则如下:

对于当前节点i而言,其孩子节点的下标满足左节点为2*i+1,右节点为2*i+2;在进行调整的过程中,只需要比较当前节点与其子节点中最大的节点进行调整即可。具体的代码逻辑可在代码中看到:

public void siftDown(int flag){
        int want=flag;
        int x=heap[flag];

        while(want<currentSize){
            int lChild=2*want+1;
            int rChild=2*want+2;
            int MAXChildNumber;
            if(lChild>currentSize){  //没有孩子节点
                heap[want]=x;
            }else{                   //有两个孩子节点
                if(lChild<currentSize){
                    MAXChildNumber=heap[lChild]>heap[rChild]?lChild:rChild;
                }else{
                    MAXChildNumber=lChild;
                }
                if(heap[MAXChildNumber]<x){
                    heap[want]=x;return;
                }else{
                    heap[want]=heap[MAXChildNumber];
                    want=MAXChildNumber;
                }
            }
        }

    }

堆顶元素的删除,我们对堆的操作基本桑就是为了获得这个堆的最值,那么毫无疑问,堆顶元素就是我们要研究的对象。下面是代码逻辑:

public int deleteTop(){
        if(currentSize<0){
            System.out.println("Sorry, this heap is empty!");
            return -1;
        }
        int target=heap[0];
        int substitute=heap[currentSize-1];
        this.currentSize--;
        heap[0]=substitute;
        siftDown(0);
        return target;
    }

下面是详细的代码

package test.maxHeap;

public class MaxHeap {

    private int []heap ;
    private int currentSize;
    private static int MAXSIZE ;

    public MaxHeap(int n){
        heap=new int[n];
        currentSize=0;
        MAXSIZE=n;
    }

    public boolean insert(int x){
        if(currentSize==MAXSIZE){
            System.out.println("Sorry,this heap is full!");
            return false;
        }
        //如果堆不满的话
        currentSize++;
        int flag=currentSize-1;
        while(flag>0){
            int parent=(flag-1)/2;
            if(heap[parent]>x){
                heap[flag]=x;
                return true;
            }else{
                heap[flag]=heap[parent];
                flag=parent;
            }
        }
        heap[0]=x;
        return true;
    }

    public void siftDown(int flag){
        int want=flag;
        int x=heap[flag];

        while(want<currentSize){
            int lChild=2*want+1;
            int rChild=2*want+2;
            int MAXChildNumber;
            if(lChild>currentSize){  //没有孩子节点
                heap[want]=x;
            }else{                   //有两个孩子节点
                if(lChild<currentSize){
                    MAXChildNumber=heap[lChild]>heap[rChild]?lChild:rChild;
                }else{
                    MAXChildNumber=lChild;
                }
                if(heap[MAXChildNumber]<x){
                    heap[want]=x;return;
                }else{
                    heap[want]=heap[MAXChildNumber];
                    want=MAXChildNumber;
                }
            }
        }

    }

    public int deleteTop(){
        if(currentSize<0){
            System.out.println("Sorry, this heap is empty!");
            return -1;
        }
        int target=heap[0];
        int substitute=heap[currentSize-1];
        this.currentSize--;
        heap[0]=substitute;
        siftDown(0);
        return target;
    }

}

好了,编码已经完成。下面我们就要检验一下是否正确吧。

public class MaxHeapTest {

    public static void main(String []args){
        MaxHeap maxHeap=new MaxHeap(7);
        for(int i=1;i<=7;i++){
            maxHeap.insert(i);
        }
        for(int i=0;i<7;i++){
            System.out.print(maxHeap.deleteTop()+"   ");
        }
        System.out.println("\n");
    }
}

接下来是程序的运行结果:

7   6   5   4   3   2   1
//可见,对于最大堆,删除堆顶的操作实际上就是完成了对堆的排序任务,也证明了我们的代码是正确的

总结:

堆的操作很重要,我们更要学会对于堆的应用,这样的数据结构才能使得程序的运行更加的高效和流畅。对于最小堆,我们只需要在插入方法,sift方法内稍加修改即可(也就是将值的代销变换关系进行调整)。这样就同样能实现最小堆的创建和相关的操作了。

代码中可能存在不太恰当地地方,希望大家予以批评指正,期待与你们共同进步!

Java实现堆的封装,进行插入,调整,删除堆顶以完成堆排序实例的更多相关文章

  1. Java 获取Word中的所有插入和删除修订

    在 Word 文档中启用跟踪更改功能后,会记录文档中的所有编辑行为,例如插入.删除.替换和格式更改.对插入或删除的内容,可通过本文中介绍的方法来获取. 引入Jar 方法1 手动引入:将 Free Sp ...

  2. 数据结构Java实现03----单向链表的插入和删除

    文本主要内容: 链表结构 单链表代码实现 单链表的效率分析 一.链表结构: (物理存储结构上不连续,逻辑上连续:大小不固定)            概念: 链式存储结构是基于指针实现的.我们把一个数据 ...

  3. 数据结构Java实现02----单向链表的插入和删除

    文本主要内容: 链表结构 单链表代码实现 单链表的效率分析 一.链表结构: (物理存储结构上不连续,逻辑上连续:大小不固定)            概念: 链式存储结构是基于指针实现的.我们把一个数据 ...

  4. Java实现 LeetCode 380 常数时间插入、删除和获取随机元素

    380. 常数时间插入.删除和获取随机元素 设计一个支持在平均 时间复杂度 O(1) 下,执行以下操作的数据结构. insert(val):当元素 val 不存在时,向集合中插入该项. remove( ...

  5. 大话数据结构(五)(java程序)——顺序存储结构的插入与删除

    获得元素操作 对于线性表的顺序存储结构来说,我们要实现getElement操作,即将线性表的第i个位置元素返回即可 插入操作 插入算法思路: 1.如果插入位置不合理,抛出异常 2.如果插入表的长度大于 ...

  6. Java实现二叉搜索树的插入、删除

    前置知识 二叉树的结构 public class TreeNode { int val; TreeNode left; TreeNode right; TreeNode() { } TreeNode( ...

  7. C++实现最小堆及插入,调整顺序,删除堆顶元素的操作

    上次用Java实现了最大堆的封装,这次就来写一下最小堆的实现吧 插入函数的思路: 向堆中插入元素有两种情况,一种是堆为空,那么就让插入值作为根节点即可:另一种是堆不为空,那么此时就要进行判断当前节点与 ...

  8. 堆+建堆、插入、删除、排序+java实现

    package testpackage; import java.util.Arrays; public class Heap { //建立大顶堆 public static void buildMa ...

  9. java基础1.0::Java面向对象、面向对象封装、抽象类、接口、static、final

    一.前言 一直以来都是拿来主义,向大神学习,从网上找资料,现在就把自己在工作中和学习中的所理解的知识点写出来,好记星不如烂笔头,一来可以作为笔记自己温习,二来也可以给走在求学之路的同学们一点参考意见, ...

随机推荐

  1. 算法导轮之B树的学习

    最近学习了算法导轮里B树相关的知识,在此写一篇博客作为总结. 1.引言 B树是为磁盘或其他直接存取的辅助存储设备而设计的一种平衡搜索树.B树类似于红黑树,但它与红黑树最大不同之处在于B树的节点可以拥有 ...

  2. Node.js 流

    稳定性: 2 - 不稳定 流是一个抽象接口,在 Node 里被不同的对象实现.例如request to an HTTPserver 是流,stdout 是流.流是可读,可写,或者可读写.所有的流是 E ...

  3. 实验与作业(Python)-03 Python程序实例解析

    截止日期: 要求: 下周实验课前上交,做好后在实验课上检查可获取平时分. 做出进阶或选做的的请用清晰的标致标识出来,方便老师批改 本次作业:可提交也可不提交.作业算平时成绩. 本次作业内容量较大,请组 ...

  4. 有没有最好的学习Angularjs2的视频入门体验?

    Which are the best video tutorials for learning AngularJS 2? 有没有最好的学习Angularjs2的视频入门体验? 翻译来源:https:/ ...

  5. TCP发送源码学习(1)--tcp_sendmsg

    一.tcp_sendmsg()函数分析: int tcp_sendmsg(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, size_t ...

  6. Windows运行GitStats

    Windows运行GitStats(金庆的专栏)GitStats - git history statistics generatorhttp://gitstats.sourceforge.net/G ...

  7. Android通过WebService实现图片的上传和下载(一)

    这篇文章将讲解Android如果通过访问WebService接口实现图片的上传和下载,当然这不但需要大家懂得Android还要懂得WebService技术,安卓属于客户端,而webservice则属于 ...

  8. 28自定义View 模仿联系人字母侧栏

    自定义View LetterView.java package com.qf.sxy.customview02; import android.content.Context; import andr ...

  9. 大数据基础知识问答----hadoop篇

    handoop相关知识点 1.Hadoop是什么? Hadoop是一个由Apache基金会所开发的分布式系统基础架构.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速 ...

  10. Android简易实战教程--第二十七话《自定义View入门案例之开关按钮详细分析》

    转载此博客请注明出处点击打开链接       http://blog.csdn.net/qq_32059827/article/details/52444145 对于自定义view,可能是一个比较大的 ...