[LeetCode] Beautiful Arrangement 优美排列
Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is constructed by these N numbers successfully if one of the following is true for the ith position (1 ≤ i ≤ N) in this array:
- The number at the ith position is divisible by i.
- i is divisible by the number at the ith position.
Now given N, how many beautiful arrangements can you construct?
Example 1:
Input: 2
Output: 2
Explanation:
The first beautiful arrangement is [1, 2]:
Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1).
Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2).
The second beautiful arrangement is [2, 1]:
Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1).
Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.
Note:
- N is a positive integer and will not exceed 15.
这道题给了我们1到N,总共N个正数,然后定义了一种优美排列方式,对于该排列中的所有数,如果数字可以整除下标,或者下标可以整除数字,那么我们就是优美排列,让我们求出所有优美排列的个数。那么对于求种类个数,或者是求所有情况,这种问题通常要用递归来做,递归简直是暴力的不能再暴力的方法了。而递归方法等难点在于写递归函数,如何确定终止条件,还有for循环中变量的起始位置如何确定。那么这里我们需要一个visited数组来记录数字是否已经访问过,因为优美排列中不能有重复数字。我们用变量pos来标记已经生成的数字的个数,如果大于N了,说明已经找到了一组排列,结果res自增1。在for循环中,i应该从1开始,因为我们遍历1到N中的所有数字,如果该数字未被使用过,且满足和坐标之间的整除关系,那么我们标记该数字已被访问过,再调用下一个位置的递归函数,之后不要忘记了恢复初始状态,参见代码如下:
解法一:
class Solution {
public:
int countArrangement(int N) {
int res = ;
vector<int> visited(N + , );
helper(N, visited, , res);
return res;
}
void helper(int N, vector<int>& visited, int pos, int& res) {
if (pos > N) {
++res;
return;
}
for (int i = ; i <= N; ++i) {
if (visited[i] == && (i % pos == || pos % i == )) {
visited[i] = ;
helper(N, visited, pos + , res);
visited[i] = ;
}
}
}
};
上面的解法在N=4时产生的优美序列如下:
1 2 3 4
1 4 3 2
2 1 3 4
2 4 3 1
3 2 1 4
3 4 1 2
4 1 3 2
4 2 3 1
通过看上面的分析,是不是觉得这道题的本质其实是求全排列,然后在所有全排列中筛选出符合题意的排列。那么求全排列的另一种经典解法就是交换数组中任意两个数字的位置,来形成新的排列,参见代码如下:
解法二:
class Solution {
public:
int countArrangement(int N) {
vector<int> nums(N);
for (int i = ; i < N; ++i) nums[i] = i + ;
return helper(N, nums);
}
int helper(int n, vector<int>& nums) {
if (n <= ) return ;
int res = ;
for (int i = ; i < n; ++i) {
if (n % nums[i] == || nums[i] % n == ) {
swap(nums[i], nums[n - ]);
res += helper(n - , nums);
swap(nums[i], nums[n - ]);
}
}
return res;
}
};
上面的解法在N=4时产生的优美序列如下:
2 4 3 1
4 2 3 1
3 4 1 2
4 1 3 2
1 4 3 2
3 2 1 4
2 1 3 4
1 2 3 4
参考资料:
https://discuss.leetcode.com/topic/79916/java-solution-backtracking
https://discuss.leetcode.com/topic/79921/my-c-elegant-solution-with-back-tracking
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] Beautiful Arrangement 优美排列的更多相关文章
- [LeetCode] Beautiful Arrangement II 优美排列之二
Given two integers n and k, you need to construct a list which contains n different positive integer ...
- LeetCode Beautiful Arrangement II
原题链接在这里:https://leetcode.com/problems/beautiful-arrangement-ii/description/ 题目: Given two integers n ...
- LeetCode Beautiful Arrangement
原题链接在这里:https://leetcode.com/problems/beautiful-arrangement/description/ 题目: Suppose you have N inte ...
- [Swift]LeetCode526. 优美的排列 | Beautiful Arrangement
Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is const ...
- 【LeetCode】526. Beautiful Arrangement 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 日期 题目地址:https://leetcode.c ...
- LC 667. Beautiful Arrangement II
Given two integers n and k, you need to construct a list which contains n different positive integer ...
- 526. Beautiful Arrangement
Suppose you have N integers from 1 to N. We define a beautiful arrangement as an array that is const ...
- LeetCode:下一个排列【31】
LeetCode:下一个排列[31] 题目描述 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排 ...
- LeetCode:字符串的排列【567】
LeetCode:字符串的排列[567] 题目描述 给定两个字符串 s1 和 s2,写一个函数来判断 s2 是否包含 s1 的排列. 换句话说,第一个字符串的排列之一是第二个字符串的子串. 示例1: ...
随机推荐
- 每天学点mysql
一.linux下查看mysql命令 查看mysql ps -ef | grep mysql mysql启动 service mysqlid start 查看服务是否安装到linux上面 chkc ...
- centos-6.7 内核升级(转)
本文转自http://www.linuser.com/thread-1622-1-1.html 默认centos-6.7 自带的内核版本: [root@testserver ~ ::]#uname - ...
- [日常] NOIP前集训日记
写点流水账放松身心... 10.8 前一天考完NHEEE的一调考试终于可以开始集训了Orz (然后上来考试就迟到5min, GG) T1维护队列瞎贪心, 过了大样例交上去一点也不稳...T出翔只拿了5 ...
- 【Spring源码深度解析学习系列】容器的基础XmlBeanFactory(二)
一.配置文件封装 Spring的配置文件读取是通过ClassPathResource进行封装的,如new ClassPathResource("test.xml"),那么Class ...
- $translate 的用法
translate 的用法 1.在html页面:文本的翻译 <h1 translate>hello world</h1> <h1 translate = 'hello w ...
- 敏捷开发每日报告--day4
1 团队介绍 团队组成: PM:齐爽爽(258) 小组成员:马帅(248),何健(267),蔡凯峰(285) Git链接:https://github.com/WHUSE2017/C-team 2 ...
- 项目Alpha冲刺Day11
一.会议照片 二.项目进展 1.今日安排 熟悉框架的使用以及编写用户查看的界面以及该页面内的操作. 2.问题困难 全局的日期转换出现问题,在序列化的时候是按照配置来的,但是反序列化的时候就错了,问题待 ...
- Django 个性化管理员站点
from django.contrib import admin # Register your models here. from .models import Moment class Momen ...
- bzoj千题计划165:bzoj5127: 数据校验
http://www.lydsy.com/JudgeOnline/upload/201712/prob12.pdf 区间的任意一个子区间都满足值域连续 等价于 区间任意一个长为2的子区间都满足值域连续 ...
- PCB名詞解釋:通孔、盲孔、埋孔(转载)
文章转载自:https://www.researchmfg.com/2011/07/pth-blind-hole-buried-hole/ PCB名詞解釋:通孔.盲孔.埋孔 Posted by 工作熊 ...