Description

对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数。若对于任意一个由1~n自然数组成的
数列,可以很容易求出有多少个逆序对数。那么逆序对数为k的这样自然数数列到底有多少个?

Input

第一行为两个整数n,k。

Output

写入一个整数,表示符合条件的数列个数,由于这个数可能很大,你只需输出该数对10000求余数后的结果。

Sample Input

4 1

Sample Output

3

HINT

下列3个数列逆序对数都为1;分别是1 2 4 3 ;1 3 2 4 ;2 1 3 4;
100%的数据 n<=1000,k<=1000

题解

注意到逆序对的话,我们只在乎他们的相对数值,而不是具体是多少。

我们定义状态$f[i][j]$表示长度为$i$的排列,逆序对个数为$j$的方案数,显然我们转移的时候,考虑的是第$i$个数放在哪。

值得注意的是,这个数显然比之前的所有数都要大。即,我将$i$放在$i-j$的位置上,我将新获得$j$个逆序对。

我们容易想到$O(n^3)$的转移:

$$f[i][j] = {\sum_{k = 0}^{min(i-1, j)} f[i-1][j-k]}$$

边界情况是$f[1][0] = 1$。

$TLE$怎么办?前缀和优化一下就好了。

 //It is made by Awson on 2017.10.18
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <stack>
#include <queue>
#include <vector>
#include <string>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Abs(x) ((x) < 0 ? (-(x)) : (x))
using namespace std;
const int N = ;
const int MOD = ; int f[N+][N+], n, m;
int sum[N+]; void work() {
scanf("%d%d", &n, &m); f[][] = sum[] = ;
for (int i = ; i <= m; i++) sum[i] = sum[i-]+f[][i];
for (int i = ; i <= n; i++) {
for (int j = ; j <= m; j++) {
(f[i][j] += sum[j]) %= MOD;
if (Min(i-, j) > ) (f[i][j] -= sum[j-Min(i-, j)-]) %= MOD;
}
for (int j = ; j <= m; j++) sum[j] = sum[j-]+f[i][j];
}
printf("%d\n", (f[n][m]+MOD)%MOD);
}
int main() {
work();
return ;
}

[HAOI 2009]逆序对数列的更多相关文章

  1. bzoj2431:[HAOI2009]逆序对数列

    单组数据比51nod的那道题还弱...而且连优化都不用了.. #include<cstdio> #include<cstring> #include<cctype> ...

  2. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  3. 2431: [HAOI2009]逆序对数列

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 954  Solved: 548[Submit][Status ...

  4. 【BZOJ2431】逆序对数列(动态规划)

    [BZOJ2431]逆序对数列(动态规划) 题面 Description 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组 ...

  5. P2513 [HAOI2009]逆序对数列

    P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那 ...

  6. bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...

  7. BZOJ2431 HAOI2009 逆序对数列 【DP】*

    BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai​,如果有i<j且ai>aja_i>a_jai​>aj​,那么我们称aia ...

  8. 洛谷P2513 [HAOI2009]逆序对数列

    P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易 ...

  9. bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Stat ...

随机推荐

  1. 2018.3.29 DIV位置调整代码

    <!DOCTYPE html><html>    <head>        <meta charset="UTF-8">      ...

  2. Idea简单SpringMVC框架配置

    前边已经介绍过了Struts在Idea上的配置,相对于Struts来说,我觉得SpringMVC有更多的优势,首先Struts是需要对action进行配置,页面发送不同的请求,就需要配置不同的acti ...

  3. QT5.8 for embedded

    http://doc.qt.io/qt-5/embedded-linux.html 先占座~

  4. 冲刺NO.2

    Alpha冲刺第二天 站立式会议 项目进展 团队成员在确定了所需技术之后,开始学习相关技术的使用,其中包括了HTML5,CSS与SSH框架等开发技术.并且在项目分工配合加以总结和完善,对现有发现的关于 ...

  5. cord-in-a-box 2.0 安装指南

    [TOC] 这篇文章简要介绍了 Ciab2.0 的安装. 包括硬件, 软件环境的选择, Ciab2.0的实际部署架构, 安装过程等. 下面就先对 Ciab2.0 部署环境做简要介绍. 1. 概述 这一 ...

  6. ThinkPad安装deepin操作系统报错解决方法

    目前deepin操作系统,软件也比较多,所以想在自己的thinkpad t430笔记本上安装.但是安装时报错,具体错误忘了看了.反复试了好几次都不行,最后在网上查了,讲bios设置调整之后可以正常安装 ...

  7. linux下面根据不同的日期创建不同文件,一般用户数据库的备份的shell编程

    [root@www scripts]# vi sh03.sh #!/bin/bash # Program: #  Program creates three files, which named by ...

  8. Python机器学习—导入各种数据的N种办法

    pandas 读取数据 一.导入一般的文件 1.read_csv(),用来读取CSV文件 官方文档是这么说的:Read CSV (comma-separated) file into DataFram ...

  9. Sudoku 第一步

    看到这个问题的思路是先解决生成数独生成器的编写,然后再解决数独求解的问题.最开始第一想法就是暴力求解,仔细算一下复杂度,发现这肯定耗时很久,于是看了很多博客(见转载).我们用回溯搜出来正解.

  10. SQL Server 实现递归查询

    基础数据/表结构                 Sql 语句 ;With cte(id,pid,TName)As ( Select id,pid,TName Union All Select B.i ...