一、概述

1、需求分析

数据格式:
日期 用户 搜索词 城市 平台 版本 需求:
1、筛选出符合查询条件(城市、平台、版本)的数据
2、统计出每天搜索uv排名前3的搜索词
3、按照每天的top3搜索词的uv搜索总次数,倒序排序
4、将数据保存到hive表中 ###数据 keyword.txt

2018-10-1:leo:water:beijing:android:1.0

2018-10-1:leo1:water:beijing:android:1.0

2018-10-1:leo2:water:beijing:android:1.0

2018-10-1:jack:water:beijing:android:1.0

2018-10-1:jack1:water:beijing:android:1.0

2018-10-1:leo:seafood:beijing:android:1.0

2018-10-1:leo1:seafood:beijing:android:1.0

2018-10-1:leo2:seafood:beijing:android:1.0

2018-10-1:leo:food:beijing:android:1.0

2018-10-1:leo1:food:beijing:android:1.0

2018-10-1:leo2:meat:beijing:android:1.0

2018-10-2:leo:water:beijing:android:1.0

2018-10-2:leo1:water:beijing:android:1.0

2018-10-2:leo2:water:beijing:android:1.0

2018-10-2:jack:water:beijing:android:1.0

2018-10-2:leo1:seafood:beijing:android:1.0

2018-10-2:leo2:seafood:beijing:android:1.0

2018-10-2:leo3:seafood:beijing:android:1.0

2018-10-2:leo1:food:beijing:android:1.0

2018-10-2:leo2:food:beijing:android:1.0

2018-10-2:leo:meat:beijing:android:1.0

####

1、如果文本案例使用的是txt编辑,将文本保存ANSI格式,否则在groupByKey的时候,第一行默认会出现一个空格,分组失败。

2、文本的最后禁止出现空行,否则在split的时候会报错,出现数组越界的错误;

2、思路

1、针对原始数据(HDFS文件),获取输入的RDD

2、使用filter算子,去针对输入RDD中的数据,进行数据过滤,过滤出符合查询条件的数据。
2.1 普通的做法:直接在fitler算子函数中,使用外部的查询条件(Map),但是,这样做的话,是不是查询条件Map,
会发送到每一个task上一份副本。(性能并不好)
2.2 优化后的做法:将查询条件,封装为Broadcast广播变量,在filter算子中使用Broadcast广播变量进行数据筛选。 3、将数据转换为“(日期_搜索词, 用户)”格式,然后呢,对它进行分组,然后再次进行映射,对每天每个搜索词的搜索用户进行去重操作,
并统计去重后的数量,即为每天每个搜索词的uv。最后,获得“(日期_搜索词, uv)” 4、将得到的每天每个搜索词的uv,RDD,映射为元素类型为Row的RDD,将该RDD转换为DataFrame 5、将DataFrame注册为临时表,使用Spark SQL的开窗函数,来统计每天的uv数量排名前3的搜索词,以及它的搜索uv,最后获取,是一个DataFrame 6、将DataFrame转换为RDD,继续操作,按照每天日期来进行分组,并进行映射,计算出每天的top3搜索词的搜索uv的总数,然后将uv总数作为key,
将每天的top3搜索词以及搜索次数,拼接为一个字符串 7、按照每天的top3搜索总uv,进行排序,倒序排序 8、将排好序的数据,再次映射回来,变成“日期_搜索词_uv”的格式 9、再次映射为DataFrame,并将数据保存到Hive中即可

二、java实现

package cn.spark.study.sql;

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.broadcast.Broadcast;
import org.apache.spark.sql.DataFrame;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.hive.HiveContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import scala.Tuple2; import java.util.*; public class DailyTop3Keyword {
@SuppressWarnings("deprecation")
public static void main(String[] args) {
SparkConf conf = new SparkConf();
JavaSparkContext jsc = new JavaSparkContext(conf);
SQLContext sqlContext = new HiveContext(jsc.sc()); // 伪造数据(这些数据可以来自mysql数据库)
final HashMap<String, List<String>> queryParaMap = new HashMap<String, List<String>>();
queryParaMap.put("city", Arrays.asList("beijing"));
queryParaMap.put("platform", Arrays.asList("android"));
queryParaMap.put("version", Arrays.asList("1.0", "1.2", "2.0", "1.5")); // 将数据进行广播
final Broadcast<HashMap<String, List<String>>> queryParamMapBroadcast = jsc.broadcast(queryParaMap); // 针对HDFS文件中的日志,获取输入RDD
JavaRDD<String> rowRDD = jsc.textFile("hdfs://spark1:9000/spark-study/keyword.txt"); // filter算子进行过滤
JavaRDD<String> filterRDD = rowRDD.filter(new Function<String, Boolean>() { private static final long serialVersionUID = 1L; @Override
public Boolean call(String log) throws Exception {
// 切割原始日志,获取城市、平台和版本
String[] logSplit = log.split(":");
String city = logSplit[3];
String platform = logSplit[4];
String version = logSplit[5]; // 与查询条件进行比对,任何一个条件,只要该条件设置了,且日志中的数据没有满足条件
// 则直接返回false,过滤掉该日志
// 否则,如果所有设置的条件,都有日志中的数据,则返回true,保留日志
HashMap<String, List<String>> queryParamMap = queryParamMapBroadcast.value();
List<String> cities = queryParamMap.get("city");
if (!cities.contains(city) && cities.size() > 0) {
return false;
}
List<String> platforms = queryParamMap.get("platform");
if (!platforms.contains(platform)) {
return false;
}
List<String> versions = queryParamMap.get("version");
if (!versions.contains(version)) {
return false;
} return true;
}
}); // 过滤出来的原始日志,映射为(日期_搜索词,用户)格式
JavaPairRDD<String, String> dateKeyWordUserRDD = filterRDD.mapToPair(new PairFunction<String, String, String>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, String> call(String log) throws Exception {
String[] logSplit = log.split(":");
String date = logSplit[0];
String user = logSplit[1];
String keyword = logSplit[2];
return new Tuple2<String, String>(date + "_" + keyword, user);
}
}); // 进行分组,获取每天每个搜索词,有哪些用户搜索了(没有去重)
JavaPairRDD<String, Iterable<String>> dateKeywordUsersRDD = dateKeyWordUserRDD.groupByKey();
List<Tuple2<String, Iterable<String>>> collect1 = dateKeywordUsersRDD.collect();
for (Tuple2<String, Iterable<String>> tuple2 : collect1) {
System.out.println("进行分组,获取每天每个搜索词,有哪些用户搜索了(没有去重)" + tuple2._2);
System.out.println(tuple2);
} // 对每天每个搜索词的搜索用户 去重操作 获得前uv
JavaPairRDD<String, Long> dateKeywordUvRDD = dateKeywordUsersRDD.mapToPair
(new PairFunction<Tuple2<String, Iterable<String>>, String, Long>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, Long> call(Tuple2<String, Iterable<String>> dataKeywordUsers) throws Exception {
String dateKeyword = dataKeywordUsers._1;
Iterator<String> users = dataKeywordUsers._2.iterator();
// 对用户去重 并统计去重后的数量
List<String> distinctUsers = new ArrayList<String>();
while (users.hasNext()) {
String user = users.next();
if (!distinctUsers.contains(user)) {
distinctUsers.add(user);
}
}
// 获取uv
long uv = distinctUsers.size();
// 日期_搜索词,用户个数
return new Tuple2<String, Long>(dateKeyword, uv);
}
});
List<Tuple2<String, Long>> collect2 = dateKeywordUvRDD.collect();
for (Tuple2<String, Long> stringLongTuple2 : collect2) {
System.out.println("对每天每个搜索词的搜索用户 去重操作 获得前uv");
System.out.println(stringLongTuple2);
} // 将每天每个搜索词的uv数据,转换成DataFrame
JavaRDD<Row> dateKeywordUvRowRDD = dateKeywordUvRDD.map(new Function<Tuple2<String, Long>, Row>() { private static final long serialVersionUID = 1L; @Override
public Row call(Tuple2<String, Long> dateKeywordUv) throws Exception {
String date = dateKeywordUv._1.split("_")[0];
String keyword = dateKeywordUv._1.split("_")[1];
long uv = dateKeywordUv._2;
return RowFactory.create(date, keyword, uv);
}
});
ArrayList<StructField> fields = new ArrayList<StructField>();
fields.add(DataTypes.createStructField("date", DataTypes.StringType, true));
fields.add(DataTypes.createStructField("keyword", DataTypes.StringType, true));
fields.add(DataTypes.createStructField("uv", DataTypes.LongType, true));
StructType structType = DataTypes.createStructType(fields);
DataFrame dateKeywordUvDF = sqlContext.createDataFrame(dateKeywordUvRowRDD, structType);
dateKeywordUvDF.registerTempTable("sales"); // 使用开窗函数,统计每天搜索uv排名前三的热点搜索词
// 日期 搜索词 人数个数 前三名
final DataFrame dailyTop3KeyWordDF = sqlContext.sql("select date,keyword,uv from (select date, keyword, uv, row_number() over (partition by date order by uv DESC ) rank from sales ) tmp_sales where rank <=3");
// 将DataFrame转换为RDD, 映射,
JavaRDD<Row> dailyTop3KeyWordRDD = dailyTop3KeyWordDF.javaRDD(); JavaPairRDD<String, String> dailyTop3KeywordRDD = dailyTop3KeyWordRDD.mapToPair(new PairFunction<Row, String, String>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<String, String> call(Row row) throws Exception {
String date = String.valueOf(row.get(0));
String keyword = String.valueOf(row.get(1));
String uv = String.valueOf(row.get(2));
// 映射为 日期 搜索词_总个数
return new Tuple2<String, String>(date, keyword + "_" + uv);
}
}); List<Tuple2<String, String>> collect = dailyTop3KeywordRDD.collect();
for (Tuple2<String, String> stringStringTuple2 : collect) {
System.out.println("开窗函数操作");
System.out.println(stringStringTuple2);
} // 根据 日期分组
JavaPairRDD<String, Iterable<String>> top3DateKeywordsRDD = dailyTop3KeywordRDD.groupByKey();
// 进行映射
JavaPairRDD<Long, String> uvDateKeywordsRDD = top3DateKeywordsRDD.mapToPair(new PairFunction<Tuple2<String, Iterable<String>>, Long, String>() { private static final long serialVersionUID = 1L; @Override
public Tuple2<Long, String> call(Tuple2<String, Iterable<String>> tuple) throws Exception {
String date = tuple._1;
// 搜索词_总个数 集合
Iterator<String> KeyWordUviterator = tuple._2.iterator();
long totalUv = 0L;
String dateKeyword = date;
while (KeyWordUviterator.hasNext()) {
// 搜索词_个数
String keywoarUv = KeyWordUviterator.next();
Long uv = Long.valueOf(keywoarUv.split("_")[1]);
totalUv += uv;
dateKeyword = dateKeyword + "," + keywoarUv;
} return new Tuple2<Long, String>(totalUv, dateKeyword);
}
});
JavaPairRDD<Long, String> sortedUvDateKeywordsRDD = uvDateKeywordsRDD.sortByKey(false);
List<Tuple2<Long, String>> rows = sortedUvDateKeywordsRDD.collect();
for (Tuple2<Long, String> row : rows) {
System.out.println(row._2 + " " + row._1);
} // 映射
JavaRDD<Row> resultRDD = sortedUvDateKeywordsRDD.flatMap(new FlatMapFunction<Tuple2<Long, String>, Row>() { private static final long serialVersionUID = 1L; @Override
public Iterable<Row> call(Tuple2<Long, String> tuple) throws Exception {
String dateKeywords = tuple._2;
String[] dateKeywordsSplit = dateKeywords.split(",");
String date = dateKeywordsSplit[0];
ArrayList<Row> rows = new ArrayList<Row>();
rows.add(RowFactory.create(date, dateKeywordsSplit[1].split("_")[0],
Long.valueOf(dateKeywordsSplit[1].split("_")[1]))); rows.add(RowFactory.create(date, dateKeywordsSplit[2].split("_")[0],
Long.valueOf(dateKeywordsSplit[2].split("_")[1]))); rows.add(RowFactory.create(date, dateKeywordsSplit[3].split("_")[0],
Long.valueOf(dateKeywordsSplit[3].split("_")[1]))); return rows;
}
}); // 将最终的数据,转换为DataFrame,并保存到Hive表中
DataFrame finalDF = sqlContext.createDataFrame(resultRDD, structType);
// List<Row> rows1 = finalDF.javaRDD().collect();
// for (Row row : rows1) {
// System.out.println(row);
// }
finalDF.saveAsTable("daily_top3_keyword_uv"); jsc.close(); }
}

48、Spark SQL之与Spark Core整合之每日top3热点搜索词统计案例实战的更多相关文章

  1. 59、Spark Streaming与Spark SQL结合使用之top3热门商品实时统计案例

    一.top3热门商品实时统计案例 1.概述 Spark Streaming最强大的地方在于,可以与Spark Core.Spark SQL整合使用,之前已经通过transform.foreachRDD ...

  2. What’s new for Spark SQL in Apache Spark 1.3(中英双语)

    文章标题 What’s new for Spark SQL in Apache Spark 1.3 作者介绍 Michael Armbrust 文章正文 The Apache Spark 1.3 re ...

  3. 理解Spark SQL(三)—— Spark SQL程序举例

    上一篇说到,在Spark 2.x当中,实际上SQLContext和HiveContext是过时的,相反是采用SparkSession对象的sql函数来操作SQL语句的.使用这个函数执行SQL语句前需要 ...

  4. 57、Spark Streaming: window滑动窗口以及热点搜索词滑动统计案例

    一.window滑动窗口 1.概述 Spark Streaming提供了滑动窗口操作的支持,从而让我们可以对一个滑动窗口内的数据执行计算操作.每次掉落在窗口内的RDD的数据, 会被聚合起来执行计算操作 ...

  5. spark SQL学习(spark连接 mysql)

    spark连接mysql(打jar包方式) package wujiadong_sparkSQL import java.util.Properties import org.apache.spark ...

  6. spark SQL学习(spark连接hive)

    spark 读取hive中的数据 scala> import org.apache.spark.sql.hive.HiveContext import org.apache.spark.sql. ...

  7. Spark SQL is a Spark module for structured data processing.

    http://spark.apache.org/docs/latest/sql-programming-guide.html

  8. (升级版)Spark从入门到精通(Scala编程、案例实战、高级特性、Spark内核源码剖析、Hadoop高端)

    本课程主要讲解目前大数据领域最热门.最火爆.最有前景的技术——Spark.在本课程中,会从浅入深,基于大量案例实战,深度剖析和讲解Spark,并且会包含完全从企业真实复杂业务需求中抽取出的案例实战.课 ...

  9. 大数据技术之_19_Spark学习_03_Spark SQL 应用解析 + Spark SQL 概述、解析 、数据源、实战 + 执行 Spark SQL 查询 + JDBC/ODBC 服务器

    第1章 Spark SQL 概述1.1 什么是 Spark SQL1.2 RDD vs DataFrames vs DataSet1.2.1 RDD1.2.2 DataFrame1.2.3 DataS ...

随机推荐

  1. NET Core 3.0 AutoFac替换内置DI的新姿势

    原文:NET Core 3.0 AutoFac替换内置DI的新姿势 .NET Core 3.0 和 以往版本不同,替换AutoFac服务的方式有了一定的变化,在尝试着升级项目的时候出现了一些问题. 原 ...

  2. WPF 程序鼠标在窗口之外的时候,控件拿到的鼠标位置在哪里?

    原文:WPF 程序鼠标在窗口之外的时候,控件拿到的鼠标位置在哪里? 在 WPF 程序中,我们有 Mouse.GetPosition(IInputElement relativeTo) 方法可以拿到鼠标 ...

  3. CentOS 7 配置本地 YUM源

    以VMware中使用ISO光盘为例配置本地Yum源 配置步骤:1.安装好CentOS 7后,使用root账户登陆系统#将安装CentOS所使用的iso光盘挂载到/mnt目录下 mount -t iso ...

  4. 关于.Net使用企业库访问MySql数据库

    关于.Net使用企业库访问MySql数据库 在网上看了很多又重写又加WebConfig中的内容,其实不用那么麻烦 企业库5.0访问MySql数据库只需要在Web服务器安装mysql-connector ...

  5. django.db.utils.InternalError: (1060, "Duplicate column name 'user_id'")迁移报错解决方法

    django.db.utils.InternalError: (1060, "Duplicate column name 'user_id'")迁移报错解决方法 django.db ...

  6. Django:表多对多查询、聚合分组、FQ查询、事务

    1表多对多的关系查询 准备工作创建表结构 from django.db import models # Create your models here. class Publisher(models. ...

  7. Linux E667 同步失败

    在使用Vim编辑/proc目录下的文件后,保存,显示"E667 同步失败" 原因 因为proc这个目录是一个虚拟文件系统,它放置的数据都是在内存中,本身不占有磁盘空间,所以使用Vi ...

  8. java实现mysql数据备份

    /** * @param hostIP ip地址,可以是本机也可以是远程 * @param userName 数据库的用户名 * @param password 数据库的密码 * @param sav ...

  9. 第9章 运行TensorFlow

    目录 第9章 运行TensorFlow 创建一个计算图并在会话中执行 管理图 节点值的生命周期 TensorFlow中的线性回归 实现梯度下降 给训练算法提供数据 保存和恢复模型 用TensorBoa ...

  10. 大数据集群环境搭建之一 Centos基本环境准备

    首先需要准备的软件都有:Centos系统.SecureCRT 8.5.VMware Workstation Pro.jdk-8u172-linux-x64.tar.gz基本上这个软件就是今天的战场. ...