『Norma 分治』
<更新提示>
<第一次更新>
<正文>
Norma
Description

Input Format
第1行,一个整数N;
第2~n+1行,每行一个整数表示序列a。
Output Format
输出答案对10^9取模后的结果。
Sample Input
4
2
4
1
4
Sample Output
109
解析
可以考虑分治计算贡献,对于一次分治\((l,r,mid)\),我们只需要计算跨过中点\(mid\)的子区间带来的贡献即可。
我们可以枚举一个左端点\(L\in[l,mid]\),然后尝试计算所有的\(R\in[mid+1,r]\),区间\([L,R]\)的贡献之和,然后就是推公式了。
对于确定的\(L\),我们先假设\(min=\min\{a_L,a_{L+1},...,a_{mid}\},max=\max\{a_L,a_{L+1},...,a_{mid}\}\),然后,我们令\(p\)为满足\(a_p<min,p\in[mid+1,r]\)最小的位置,\(q\)为满足\(a_q>max,q\in[mid+1,r]\)最小的位置,然后计算贡献。
不妨设\(p\leq q\),那么对于\(R\in[mid+1,p)\),区间\([L,R]\)的最大最小值为\(min,max\),贡献为:
\]
直接计算即可。
对于\(R\in[p,q)\),区间的最大值为\(max\),最小值为\(\min\{a_{mid+1},...,a_R\}\),贡献为
\]
维护\(min_R\times R\)和\(min_R\)两个前缀和即可。
对于\(R\in[q,r]\),区间的最大值为\(\max\{a_{mid+1},...,a_R\}\),最小值为\(\min\{a_{mid+1},...,a_R\}\),贡献为
\]
维护\(max_R\times min_R\times R\)和\(max_R\times min_R\)两个前缀和即可。
对于\(q<p\),只有第二部分不一样,其贡献为
\]
维护\(max_R\times R\)和\(max_R\)两个前缀和即可。
于是这道题就解决了。
\(Code:\)
#include <bits/stdc++.h>
using namespace std;
const int N = 500020 , Mod = 1e9 , INF = 0x3f3f3f3f;
int n;
long long ans,a[N],Min[N],Max[N],sMin[N],sMax[N],MinMax[N],sMinMax[N];
inline long long add(long long a,long long b) { long long c = a + b; while ( c >= Mod ) c -= Mod; return c; }
inline void upd(long long &a,long long b) { a = add( a , b ); }
inline long long sigma(int l,int r) { return 1LL * ( l + r ) * ( r - l + 1 ) / 2 % Mod; }
inline void divide(int l,int r)
{
if ( l == r ) return upd( ans , a[l] * a[l] % Mod );
int mid = l + r >> 1; long long mn = INF, mx = 0;
divide( l , mid ) , divide( mid + 1 , r );
Min[mid] = Max[mid] = sMin[mid] = sMax[mid] = MinMax[mid] = sMinMax[mid] = 0;
for (int i=mid+1;i<=r;i++)
{
mn = min( mn , a[i] ) , mx = max( mx , a[i] );
Min[i] = add( Min[i-1] , mn ) , Max[i] = add( Max[i-1] , mx );
sMin[i] = add( sMin[i-1] , mn * i % Mod );
sMax[i] = add( sMax[i-1] , mx * i % Mod );
MinMax[i] = add( MinMax[i-1] , mn * mx % Mod );
sMinMax[i] = add( sMinMax[i-1] , mn * mx % Mod * i % Mod );
}
mn = INF , mx = 0;
int p = mid + 1 , q = mid + 1;
for (int i=mid;i>=l;i--)
{
mn = min( mn , a[i] ) , mx = max( mx , a[i] );
while ( p <= r && a[p] >= mn ) p++;
while ( q <= r && a[q] <= mx ) q++;
if ( p <= q )
{
upd( ans , mn * mx % Mod * sigma( mid - i + 2 , p - i ) % Mod );
upd( ans , mx * ( sMin[q-1] - sMin[p-1] ) % Mod - mx * (i-1) % Mod * ( Min[q-1] - Min[p-1] ) % Mod + Mod );
upd( ans , ( sMinMax[r] - sMinMax[q-1] ) - (i-1) * ( MinMax[r] - MinMax[q-1] ) % Mod + Mod );
}
if ( p > q )
{
upd( ans , mn * mx % Mod * sigma( mid - i + 2 , q - i ) % Mod );
upd( ans , mn * ( sMax[p-1] - sMax[q-1] ) % Mod - mn * (i-1) % Mod * ( Max[p-1] - Max[q-1] ) % Mod + Mod );
upd( ans , ( sMinMax[r] - sMinMax[p-1] ) - (i-1) * ( MinMax[r] - MinMax[p-1] ) % Mod + Mod );
}
}
}
int main(void)
{
freopen("norma.in","r",stdin);
freopen("norma.out","w",stdout);
scanf("%d",&n);
for (int i=1;i<=n;i++)
scanf("%lld",&a[i]) , a[i] %= Mod;
divide( 1 , n );
printf("%lld\n",ans);
return 0;
}
<后记>
『Norma 分治』的更多相关文章
- 似魔鬼的 『 document.write 』
在平时的工作中,楼主很少用 document.write 方法,一直觉得 document.write 是个危险的方法.楼主不用,并不代表别人不用,最近给维护的项目添了一点代码,更加深了我对 &quo ...
- 拾遗:『Linux Capability』
『Linux Capability』 For the purpose of performing permission checks, traditional UNIX implementations ...
- 『创意欣赏』20款精致的 iOS7 APP 图标设计
这篇文章给大家分享20款精致的 iOS7 移动应用程序图标,遵循图形设计的现代潮流,所有图标都非常了不起,给人惊喜.通过学习这些移动应用程序图标,设计人员可以提高他们的创作,使移动用户界面看起来更有趣 ...
- 『设计前沿』14款精致的国外 iOS7 图标设计示例
每天都有大量的应用程序发布到 iOS App Store 上,在数量巨大的应用中想要引起用户的主要,首要的就是独特的图标设计.这篇文章收集了14款精致的国外 iOS7 图标设计示例,希望能带给你设计灵 ...
- Github 恶搞教程(一起『玩坏』自己的 Github 吧)
最近在伯乐在线读到一篇趣文,<如何在 Github『正确』做贡献>,里面各种能人恶搞 Github 的『Public contributions』,下面截取几个小伙伴的战绩: 顺藤摸瓜,发 ...
- 『创意欣赏』30幅逼真的 3D 虚拟现实环境呈现
又到周末了,给大家分享30幅漂亮的 3D 虚拟现实环境呈现,放松一下.这些创造性的场景都是通过 3D 图形设计软件,结合三维现实环境渲染制作出来的.一起欣赏:) 您可能感兴趣的相关文章 20幅温馨浪漫 ...
- [TYVJ1827]『Citric II』一道防AK好题
时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 第二届『Citric杯』NOIP提高组模拟赛第一题 描述 Lemon认为在第一届『Citric』杯模拟赛中出的 ...
- 办理滑铁卢大学(本科)学历认证『微信171922772』UW学位证成绩单使馆认证University of Waterloo
办理滑铁卢大学(本科)学历认证『微信171922772』UW学位证成绩单使馆认证University of Waterloo QQ/微信171922772办理毕业证成绩单.真实使馆及教育部学历认证★诚 ...
- 办理渥太华大学(本科)学历认证『微信171922772』Ottawa U学位证成绩单使馆认证University of Ottawa
办理渥太华大学(本科)学历认证『微信171922772』Ottawa U学位证成绩单使馆认证University of Ottawa QQ/微信171922772办理毕业证成绩单.真实使馆及教育部学历 ...
随机推荐
- String.trim()源码解析
trim()这个方法一般用来消除字符串两边的空格,但是内部是如何实现的呢? 附上源码: public String trim() { int len = value.length; int st = ...
- 解决eclipse打开文件乱码
解决办法 需要设置的几处地方为: Window->Preferences->General ->Content Type->Text->JSP 最下面设置为UTF-8 W ...
- tomcat特殊字符处理问题解决方案
tomcat特殊字符处理问题解决方案 直接加上如下代码,本质是通过反射加上过滤字符 @Configuration public class TomcatConfig { @Bean public Co ...
- 3. 移动安全渗透测试-(Android基础漏洞)
3.1 数据存储漏洞 用户经常会把敏感数据交给app,比如:用户名and密码认证令牌联系人记录通信记录历史使用记录..... 只要愿意,app可以收集这些用户的隐私和个人信息明文存储或明文传输,通常保 ...
- 简单聊聊实时视频rtmp
背景: 由于经常接触实时视频, 对实时视频略有了解. 实时视频是将视频流实时上传到服务器端进行解析, 由RTMP服务器处理. RTMP 服务器 自己动手搭建一个rtmp, 本文在 Linux环境中搭建 ...
- linux 广播和组播
广播和组播 广播,必须使用UDP协议,是只能在局域网内使用,指定接收端的IP为*.*.*.255后,发送的信息,局域网内的所有接受端就能够接到信息了. 广播的发送端代码 #include <st ...
- lua 的 cjson 安装,使用
1. 背景: 虚拟机安装的luajit 没有 cjson 库,就不能对 table 进行 编码操作,手动安装一个. 2. 安装: cjson下载地址:http://www.kyne.com.au/~ ...
- JS高阶---执行上下文
1.代码分类 2.全局执行上下文 3.函数执行上下文 .
- c# 第9节 数据类型之引用类型
本节内容: 1:数据类型之引用类型 2:字符串要注意的两点: 1:数据类型之引用类型 实例: 2:字符串要注意的两点: 对变量进行重新赋值:其原本的字符串并没有销毁
- selenium 简介 及浏览器配置
简介: Selenium是一款基于web应用程序的开源测试工具.Selenium测试直接运行在浏览器中,就像真正的用户在操作一样.Selenium是一个自动化的web应用功能测试工具. Seleniu ...