<更新提示>

<第一次更新>


<正文>

Norma

Description

Input Format

第1行,一个整数N;

第2~n+1行,每行一个整数表示序列a。

Output Format

输出答案对10^9取模后的结果。

Sample Input

4
2
4
1
4

Sample Output

109

解析

可以考虑分治计算贡献,对于一次分治\((l,r,mid)\),我们只需要计算跨过中点\(mid\)的子区间带来的贡献即可。

我们可以枚举一个左端点\(L\in[l,mid]\),然后尝试计算所有的\(R\in[mid+1,r]\),区间\([L,R]\)的贡献之和,然后就是推公式了。

对于确定的\(L\),我们先假设\(min=\min\{a_L,a_{L+1},...,a_{mid}\},max=\max\{a_L,a_{L+1},...,a_{mid}\}\),然后,我们令\(p\)为满足\(a_p<min,p\in[mid+1,r]\)最小的位置,\(q\)为满足\(a_q>max,q\in[mid+1,r]\)最小的位置,然后计算贡献。

不妨设\(p\leq q\),那么对于\(R\in[mid+1,p)\),区间\([L,R]\)的最大最小值为\(min,max\),贡献为:

\[min\times max\times\sum_{R=mid+1}^{p-1} (R-L+1)
\]

直接计算即可。

对于\(R\in[p,q)\),区间的最大值为\(max\),最小值为\(\min\{a_{mid+1},...,a_R\}\),贡献为

\[max\times \sum_{R=p}^{q-1}min_R\times (R-L+1)\\=max\times \sum_{R=p}^{q-1}min_R\times R-max\times (L-1)\sum_{R=p}^{q-1}min_R
\]

维护\(min_R\times R\)和\(min_R\)两个前缀和即可。

对于\(R\in[q,r]\),区间的最大值为\(\max\{a_{mid+1},...,a_R\}\),最小值为\(\min\{a_{mid+1},...,a_R\}\),贡献为

\[\sum_{R=q}^rmax_R\times min_R\times(R-L+1)\\=\sum_{R=q}^rmax_R\times min_R\times R-(L-1)\sum_{R=q}^rmax_R\times min_R
\]

维护\(max_R\times min_R\times R\)和\(max_R\times min_R\)两个前缀和即可。

对于\(q<p\),只有第二部分不一样,其贡献为

\[min\times \sum_{R=p}^{q-1}max_R\times R-min\times (L-1)\sum_{R=p}^{q-1}max_R
\]

维护\(max_R\times R\)和\(max_R\)两个前缀和即可。

于是这道题就解决了。

\(Code:\)

#include <bits/stdc++.h>
using namespace std;
const int N = 500020 , Mod = 1e9 , INF = 0x3f3f3f3f;
int n;
long long ans,a[N],Min[N],Max[N],sMin[N],sMax[N],MinMax[N],sMinMax[N];
inline long long add(long long a,long long b) { long long c = a + b; while ( c >= Mod ) c -= Mod; return c; }
inline void upd(long long &a,long long b) { a = add( a , b ); }
inline long long sigma(int l,int r) { return 1LL * ( l + r ) * ( r - l + 1 ) / 2 % Mod; }
inline void divide(int l,int r)
{
if ( l == r ) return upd( ans , a[l] * a[l] % Mod );
int mid = l + r >> 1; long long mn = INF, mx = 0;
divide( l , mid ) , divide( mid + 1 , r );
Min[mid] = Max[mid] = sMin[mid] = sMax[mid] = MinMax[mid] = sMinMax[mid] = 0;
for (int i=mid+1;i<=r;i++)
{
mn = min( mn , a[i] ) , mx = max( mx , a[i] );
Min[i] = add( Min[i-1] , mn ) , Max[i] = add( Max[i-1] , mx );
sMin[i] = add( sMin[i-1] , mn * i % Mod );
sMax[i] = add( sMax[i-1] , mx * i % Mod );
MinMax[i] = add( MinMax[i-1] , mn * mx % Mod );
sMinMax[i] = add( sMinMax[i-1] , mn * mx % Mod * i % Mod );
}
mn = INF , mx = 0;
int p = mid + 1 , q = mid + 1;
for (int i=mid;i>=l;i--)
{
mn = min( mn , a[i] ) , mx = max( mx , a[i] );
while ( p <= r && a[p] >= mn ) p++;
while ( q <= r && a[q] <= mx ) q++;
if ( p <= q )
{
upd( ans , mn * mx % Mod * sigma( mid - i + 2 , p - i ) % Mod );
upd( ans , mx * ( sMin[q-1] - sMin[p-1] ) % Mod - mx * (i-1) % Mod * ( Min[q-1] - Min[p-1] ) % Mod + Mod );
upd( ans , ( sMinMax[r] - sMinMax[q-1] ) - (i-1) * ( MinMax[r] - MinMax[q-1] ) % Mod + Mod );
}
if ( p > q )
{
upd( ans , mn * mx % Mod * sigma( mid - i + 2 , q - i ) % Mod );
upd( ans , mn * ( sMax[p-1] - sMax[q-1] ) % Mod - mn * (i-1) % Mod * ( Max[p-1] - Max[q-1] ) % Mod + Mod );
upd( ans , ( sMinMax[r] - sMinMax[p-1] ) - (i-1) * ( MinMax[r] - MinMax[p-1] ) % Mod + Mod );
}
}
}
int main(void)
{
freopen("norma.in","r",stdin);
freopen("norma.out","w",stdout);
scanf("%d",&n);
for (int i=1;i<=n;i++)
scanf("%lld",&a[i]) , a[i] %= Mod;
divide( 1 , n );
printf("%lld\n",ans);
return 0;
}

<后记>

『Norma 分治』的更多相关文章

  1. 似魔鬼的 『 document.write 』

    在平时的工作中,楼主很少用 document.write 方法,一直觉得 document.write 是个危险的方法.楼主不用,并不代表别人不用,最近给维护的项目添了一点代码,更加深了我对 &quo ...

  2. 拾遗:『Linux Capability』

    『Linux Capability』 For the purpose of performing permission checks, traditional UNIX implementations ...

  3. 『创意欣赏』20款精致的 iOS7 APP 图标设计

    这篇文章给大家分享20款精致的 iOS7 移动应用程序图标,遵循图形设计的现代潮流,所有图标都非常了不起,给人惊喜.通过学习这些移动应用程序图标,设计人员可以提高他们的创作,使移动用户界面看起来更有趣 ...

  4. 『设计前沿』14款精致的国外 iOS7 图标设计示例

    每天都有大量的应用程序发布到 iOS App Store 上,在数量巨大的应用中想要引起用户的主要,首要的就是独特的图标设计.这篇文章收集了14款精致的国外 iOS7 图标设计示例,希望能带给你设计灵 ...

  5. Github 恶搞教程(一起『玩坏』自己的 Github 吧)

    最近在伯乐在线读到一篇趣文,<如何在 Github『正确』做贡献>,里面各种能人恶搞 Github 的『Public contributions』,下面截取几个小伙伴的战绩: 顺藤摸瓜,发 ...

  6. 『创意欣赏』30幅逼真的 3D 虚拟现实环境呈现

    又到周末了,给大家分享30幅漂亮的 3D 虚拟现实环境呈现,放松一下.这些创造性的场景都是通过 3D 图形设计软件,结合三维现实环境渲染制作出来的.一起欣赏:) 您可能感兴趣的相关文章 20幅温馨浪漫 ...

  7. [TYVJ1827]『Citric II』一道防AK好题

    时间: 1000ms / 空间: 131072KiB / Java类名: Main 背景 第二届『Citric杯』NOIP提高组模拟赛第一题 描述 Lemon认为在第一届『Citric』杯模拟赛中出的 ...

  8. 办理滑铁卢大学(本科)学历认证『微信171922772』UW学位证成绩单使馆认证University of Waterloo

    办理滑铁卢大学(本科)学历认证『微信171922772』UW学位证成绩单使馆认证University of Waterloo QQ/微信171922772办理毕业证成绩单.真实使馆及教育部学历认证★诚 ...

  9. 办理渥太华大学(本科)学历认证『微信171922772』Ottawa U学位证成绩单使馆认证University of Ottawa

    办理渥太华大学(本科)学历认证『微信171922772』Ottawa U学位证成绩单使馆认证University of Ottawa QQ/微信171922772办理毕业证成绩单.真实使馆及教育部学历 ...

随机推荐

  1. CSS颜色、单位、文本样式

    一.CSS颜色:关键字 red16进制的6位 #ffffff16进制的3位 #fffrgb(0,255,100) 取值范围:0~255 (r:red.g:green.b:blue)rgba(0,255 ...

  2. CTF必备技能丨Linux Pwn入门教程——ROP技术(上)

    Linux Pwn入门教程系列分享如约而至,本套课程是作者依据i春秋Pwn入门课程中的技术分类,并结合近几年赛事中出现的题目和文章整理出一份相对完整的Linux Pwn教程. 教程仅针对i386/am ...

  3. Promise的三兄弟:all(), race()以及allSettled()

    摘要: 玩转Promise. 原文:Promise 中的三兄弟 .all(), .race(), .allSettled() 译者:前端小智 Fundebug经授权转载,版权归原作者所有. 从ES6 ...

  4. pip安装模块使用国内镜像源加速安装

    今天在安装Python模块matplotlib的时候,一直安装不成功,老是提示“socket.timeout: The read operation timed out”或者“Read timed o ...

  5. JWT(Json Web Token):一种在Web应用中安全传递信息的规范 转载

    文本将介绍一种在Web应用中安全传递信息的方式,称为JWT. 本文内容是对JWT官网介绍说明的英文翻译而来,由于本文英文水平有限,如有错误,还请指出,谢谢. What is JSON Web Toke ...

  6. android onActivityResult不被回调或窗体弹出后即补回调的解决办法

    假设从A窗体弹出B窗体,则在AndroidManifest.xml文件中,B不能有:android:launchMode="singleTask“属性,否则,A窗体里的onActivityR ...

  7. Docker底层原理(三)

    1. 我们运行:docker run hello-world 由于本地没有hello-world,所以会远程下载一个hello-world的镜像,并在容器内运行. 2. docker run干了什么?

  8. iptables防火墙的基本应用

    iptables是Linux上常用的防火墙软件,下面说一下iptables的安装.清除iptables规则.iptables只开放指定端口.iptables屏蔽指定ip.ip段及解封.删除已添加的ip ...

  9. eclipse集成maven(四)

    一.配置maven 打开Window-Preference-Maven,我们可以看到,默认是使用Eclipse的,不是我们要的maven,可以在Installations中,点击"Add&q ...

  10. 生产器&迭代器

    生成器 列表生成器:简洁代码 >>> a = [i+1 for i in range(10)] >>> a [1, 2, 3, 4, 5, 6, 7, 8, 9, ...