TJOI2016 字符串
字符串
佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物。生日礼物放在一个神奇的箱子中。箱子外边写了一个长为n的字符串s,和m个问题。佳媛姐姐必须正确回答这m个问题,才能打开箱子拿到礼物,升职加薪,出任CEO,嫁给高富帅,走上人生巅峰。每个问题均有a,b,c,d四个参数,问你子串s[a..b]的所有子串和s[c..d]的最长公共前缀的长度的最大值是多少?佳媛姐姐并不擅长做这样的问题,所以她向你求助,你该如何帮助她呢?
1<=n,m<=100,000,
分析
参照Dream_maker_yk和wzj的题解。
查前缀我们就把串反着插入,这时候状态该有一个left集合。
在这个反串的SAM上,两个点的最长公共前缀是两个点parent树上lca的len.
我们对于parent树中的每个节点,都维护他的子树中出现了字符串中的哪些节点,即left集合。这个可用线段树合并。
二分答案x,倍增找到c的祖先中len>=x的最浅的节点,判断该节点的left集合中是否出现了[a,b-x+1]。
时间复杂度\(O(n \log^2 n)\)
co int N=2e5;
namespace T{ // Interval Tree
int tot,root[N],lc[N*20],rc[N*20];
void insert(int&x,int l,int r,int p){
x=++tot;
if(l==r) return;
int mid=l+r>>1;
if(p<=mid) insert(lc[x],l,mid,p);
else insert(rc[x],mid+1,r,p);
}
int merge(int x,int y){
if(!x||!y) return x+y;
int z=++tot;
lc[z]=merge(lc[x],lc[y]),rc[z]=merge(rc[x],rc[y]);
return z;
}
int query(int x,int l,int r,int ql,int qr){
if(!x) return 0;
if(ql<=l&&r<=qr) return 1;
int mid=l+r>>1;
if(qr<=mid) return query(lc[x],l,mid,ql,qr);
if(ql>mid) return query(rc[x],mid+1,r,ql,qr);
return query(lc[x],l,mid,ql,qr)||query(rc[x],mid+1,r,ql,qr);
}
}
int n,m;
char s[N];
int last=1,tot=1; // Suffix Automaton
int ch[N][26],fa[N],len[N],pos[N]; // pos: out->in
void extend(int c,int po){
int p=last,cur=last=++tot;
len[cur]=len[p]+1,pos[po]=cur;
T::insert(T::root[cur],1,n,po);
for(;p&&!ch[p][c];p=fa[p]) ch[p][c]=cur;
if(!p) fa[cur]=1;
else{
int q=ch[p][c];
if(len[q]==len[p]+1) fa[cur]=q;
else{
int clone=++tot;
memcpy(ch[clone],ch[q],sizeof ch[q]);
fa[clone]=fa[q],len[clone]=len[p]+1;
fa[cur]=fa[q]=clone;
for(;ch[p][c]==q;p=fa[p]) ch[p][c]=clone;
}
}
}
int cnt[N],ord[N],anc[N][19];
int check(int x,int a,int b,int p){
for(int i=18;i>=0;--i)
if(len[anc[p][i]]>=x) p=anc[p][i];
return T::query(T::root[p],1,n,a,b-x+1);
}
int main(){
read(n),read(m);
scanf("%s",s+1);
for(int i=n;i>=1;--i) extend(s[i]-'a',i);
for(int i=1;i<=tot;++i) ++cnt[len[i]];
for(int i=1;i<=n;++i) cnt[i]+=cnt[i-1];
for(int i=1;i<=tot;++i) ord[cnt[len[i]]--]=i;
for(int i=tot;i;--i){
int u=ord[i];
T::root[fa[u]]=T::merge(T::root[fa[u]],T::root[u]);
}
for(int i=1;i<=tot;++i){ // edit 1: order isn't changeable
int u=ord[i];
anc[u][0]=fa[u];
for(int j=1;j<=18;++j) anc[u][j]=anc[anc[u][j-1]][j-1];
}
for(int a,b,c,d;m--;){
read(a),read(b),read(c),read(d);
int l=0,r=std::min(b-a+1,d-c+1);
while(l<r){
int mid=l+r+1>>1;
if(check(mid,a,b,pos[c])) l=mid;
else r=mid-1;
}
printf("%d\n",l);
}
return 0;
}
TJOI2016 字符串的更多相关文章
- 洛谷P4094 - [TJOI2016]字符串
Portal Description 给出一个字符串\(s(|s|\leq10^5)\)和\(m\)次询问,每次询问子串\(s[x_1..x_2]\)的所有子串和\(s[y_1..y_2]\)的最长公 ...
- BZOJ 4556 [HEOI2016/TJOI2016]字符串
BZOJ 4556 [HEOI2016/TJOI2016]字符串 其实题解更多是用后缀数组+数据结构的做法,貌似也不好写. 反正才学了 sam 貌似比较简单的做法. 还是得先二分,然后倍增跳到 $ s ...
- P4094 [HEOI2016/TJOI2016]字符串 后缀数组+主席树+二分答案
$ \color{#0066ff}{ 题目描述 }$ 佳媛姐姐过生日的时候,她的小伙伴从某东上买了一个生日礼物.生日礼物放在一个神奇的箱子中.箱子外边写了一个长为n的字符串s,和m个问题.佳媛姐姐必须 ...
- [HEOI2016/TJOI2016]字符串
嘟嘟嘟 今天复习一下SAM. lcp固然不好做,干脆直接翻过来变成后缀.首先答案一定满足单调性,所以我们二分lcp的长度\(mid\),然后判断\(s[d \ldots d + mid - 1]\)是 ...
- [HEOI2016/TJOI2016]字符串(后缀数组+二分+主席树/后缀自动机+倍增+线段树合并)
后缀数组解法: 先二分最长前缀长度 \(len\),然后从 \(rnk[c]\) 向左右二分 \(l\) 和 \(r\) 使 \([l,r]\) 的 \(height\geq len\),然后在主席树 ...
- 【[HEOI2016/TJOI2016]字符串】
码农题啊 上来先无脑一个\(SA\)的板子,求出\(SA\)和\(het\)数组 我们只需要从\(sa[i]\in[a,b]\)的所有\(i\)中找到一个\(i\)使得\(sa[i]\)和\(rk[c ...
- luoguP4094 [HEOI2016/TJOI2016]字符串
题意 考虑二分答案\(mid\),现在我们要判断\(s[c...c+mid-1]\)是否在\(s[a...b]\)出现过. 首先找到\(s[c...c+mid-1]\)所在的状态: 建出\(paren ...
- BZOJ4556 HEOI2016/TJOI2016字符串 (后缀树+主席树)
二分答案后相当于判断一个区间的后缀与某个后缀的最长公共前缀是否能>=ans.建出后缀树,在上述问题中后者所在节点向上倍增的跳至len>=ans的最高点,然后相当于查询子树中是否有该区间的节 ...
- HEOI2016/TJOI2016 字符串问题
题目链接:戳我 非常不好意思,因为想要排版,所以今天先只把代码贴出来,明天补题解. 40pts暴力:直接暴力匹配 #include<iostream> #include<cstrin ...
随机推荐
- 分布式全文搜索引擎(ElasticSearch)
1. ElasticSearch介绍(简称ES) ES即为了解决原生Lucene使用的不足,优化Lucene的调用方式,并实现了高可用的分布式集群的搜索方案. 首先,ES的索引库管理支持依然是基于Ap ...
- 51单片机局部变量占用ram的问题
51单片机局部变量占用ram的问题 一.问题 自从工作以来基本不使用51或者增强型51之类的单片机.最近调试芯圣HC89S003F4增强型51,移植了32的实用代码,结果发现RAM爆了!!! 二.实践 ...
- Modelsim——工程建立和常用设置
Modelsim是一款优秀的FPGA仿真软件,这里记录一下Modelsim的基本使用. 一.联合仿真 联合仿真,即Quartus ii自己调用Modelsim,Modelsim自动出现仿真波形. 1. ...
- idea单行注释优化成不在行首注释
- Qt5 源代码自动跳转
版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/nixiaoxianggong/articl ...
- git 学习笔记 ---远程仓库
Git是分布式版本控制系统,同一个Git仓库,可以分布到不同的机器上.怎么分布呢?最早,肯定只有一台机器有一个原始版本库,此后,别的机器可以“克隆”这个原始版本库,而且每台机器的版本库其实都是一样的, ...
- core文件问题
core文件问题 Linux系统core涉及到的问题 core文件的问题具体可以参照系统的man手册(man core) 能否生成core文件 ulimit -c 磁盘权限问题 进程权限问题 生成co ...
- Spring Cloud Alibaba学习笔记(18) - Spring Cloud Gateway 内置的过滤器工厂
参考:https://cloud.spring.io/spring-cloud-static/spring-cloud-gateway/2.1.0.RELEASE/single/spring-clou ...
- Mybatis基于xml的动态sql实现
动态sql可以很方便的拼接sql语句,主要用于复合条件查询: 主要通过这几个标签实现: if 标签: where 标签 choose标签: foreach标签: if 标签: <select i ...
- 微服务与SpringCloud简介
A.官网 https://spring.io/projects/spring-cloud B.简介 Spring Cloud是一个基于Spring Boot实现的云应用开发工具,它为基于JVM的云应用 ...