易百教程人工智能python修正-人工智能NLTK性别发现器
在这个问题陈述中,将通过提供名字来训练分类器以找到性别(男性或女性)。 我们需要使用启发式构造特征向量并训练分类器。这里使用scikit-learn软件包中的标签数据。 以下是构建性别查找器的Python代码 -
导入必要的软件包 -
import random from nltk import NaiveBayesClassifier
from nltk.classify import accuracy as nltk_accuracy
from nltk.corpus import names
def extract_features(word, N = 2):
last_n_letters = word[-N:]
return {'feature': last_n_letters.lower()}
if __name__=='__main__':
使用NLTK中提供的标签名称(男性和女性)创建培训数据 -
male_list = [(name, 'male') for name in names.words('male.txt')]
female_list = [(name, 'female') for name in names.words('female.txt')]
data = (male_list + female_list)
random.seed(5)
random.shuffle(data)
现在,测试数据将被创建如下 -
namesInput = ['Rajesh', 'Gaurav', 'Swati', 'Shubha']
使用以下代码定义用于列车和测试的样本数 -
train_sample = int(0.8 * len(data))
现在,需要迭代不同的长度,以便可以比较精度 -
for i in range(1, 6):
print('\nNumber of end letters:', i)
features = [(extract_features(n, i), gender) for (n, gender) in data]
train_data, test_data = features[:train_sample],
features[train_sample:]
classifier = NaiveBayesClassifier.train(train_data)
分类器的准确度可以计算如下 -
accuracy_classifier = round(100 * nltk_accuracy(classifier, test_data), 2)
print('Accuracy = ' + str(accuracy_classifier) + '%')
现在,可以预测输出结果 -
for name in namesInput:
print(name, '==>', classifier.classify(extract_features(name, i))
上述程序将生成以下输出 -
Number of end letters: 1
Accuracy = 74.7%
Rajesh -> female
Gaurav -> male
Swati -> female
Shubha -> female
Number of end letters: 2
Accuracy = 78.79%
Rajesh -> male
Gaurav -> male
Swati -> female
Shubha -> female
Number of end letters: 3
Accuracy = 77.22%
Rajesh -> male
Gaurav -> female
Swati -> female
Shubha -> female
Number of end letters: 4
Accuracy = 69.98%
Rajesh -> female
Gaurav -> female
Swati -> female
Shubha -> female
Number of end letters: 5
Accuracy = 64.63%
Rajesh -> female
Gaurav -> female
Swati -> female
Shubha -> female
完整代码
import random from nltk import NaiveBayesClassifier
from nltk.classify import accuracy as nltk_accuracy
from nltk.corpus import names def extract_features(word, N=2):
last_n_letters = word[-N:]
return {'feature': last_n_letters.lower()} if __name__ == '__main__': male_list = [(name, 'male') for name in names.words('male.txt')]
female_list = [(name, 'female') for name in names.words('female.txt')]
data = (male_list + female_list) random.seed(5)
random.shuffle(data)
namesInput = ['Rajesh', 'Gaurav', 'Swati', 'Shubha']
train_sample = int(0.8 * len(data)) for i in range(1, 6):
print('\nNumber of end letters:', i)
features = [(extract_features(n, i), gender) for (n, gender) in data]
train_data, test_data = features[:train_sample], features[train_sample:] classifier = NaiveBayesClassifier.train(train_data) accuracy_classifier = round(100 * nltk_accuracy(classifier, test_data), 2)
print('Accuracy = ' + str(accuracy_classifier) + '%') for name in namesInput:
print(name, '==>', classifier.classify(extract_features(name, i)))
易百教程人工智能python修正-人工智能NLTK性别发现器的更多相关文章
- 易百教程人工智能python修正-人工智能无监督学习(聚类)
无监督机器学习算法没有任何监督者提供任何指导. 这就是为什么它们与真正的人工智能紧密结合的原因. 在无人监督的学习中,没有正确的答案,也没有监督者指导. 算法需要发现用于学习的有趣数据模式. 什么是聚 ...
- 易百教程人工智能python修正-人工智能监督学习(回归)
回归是最重要的统计和机器学习工具之一. 我们认为机器学习的旅程从回归开始并不是错的. 它可以被定义为使我们能够根据数据做出决定的参数化技术,或者换言之,允许通过学习输入和输出变量之间的关系来基于数据做 ...
- 易百教程人工智能python修正-人工智能监督学习(分类)
分类技术或模型试图从观测值中得出一些结论. 在分类问题中,我们有分类输出,如“黑色”或“白色”或“教学”和“非教学”. 在构建分类模型时,需要有包含数据点和相应标签的训练数据集. 例如,如果想检查图像 ...
- 易百教程人工智能python修正-人工智能数据准备-标记数据
我们已经知道,某种格式的数据对于机器学习算法是必需的. 另一个重要的要求是,在将数据作为机器学习算法的输入发送之前,必须正确标记数据. 例如,如果所说的分类,那么数据上会有很多标记. 这些标记以文字, ...
- 易百教程人工智能python修正-人工智能数据准备-预处理数据
预处理数据 在我们的日常生活中,需要处理大量数据,但这些数据是原始数据. 为了提供数据作为机器学习算法的输入,需要将其转换为有意义的数据. 这就是数据预处理进入图像的地方. 换言之,可以说在将数据提供 ...
- 易百教程人工智能python补充-NLTK包
自然语言处理(NLP)是指使用诸如英语之类的自然语言与智能系统进行通信的AI方法. 如果您希望智能系统(如机器人)按照您的指示执行操作,希望听取基于对话的临床专家系统的决策时,则需要处理自然语言. N ...
- MyBatis整合Spring MVC(易百教程)
MyBatis是ibatis的升级版,作为hibernate的老对手,它是一个可以自定义SQL.存储过程和高级映射的持久层框架.与Hibernate 的主要区别就是 Mybatis 是半自动化的,而 ...
- Mybatis与Spring集成(易百教程)
整个Mybatis与Spring集成示例要完成的步骤如下: 1.示例功能描述 2.创建工程 3.数据库表结构及数据记录 4.实例对象 5.配置文件 6.测试执行,输出结果 1.示例功能描述 在本示例中 ...
- Mybatis 多对多(易百教程)
mybatis3.0 添加了association和collection标签专门用于对多个相关实体类数据进行级联查询,但仍不支持多个相关实体类数据的级联保存和级联删除操作.因此在进行实体类多对多映射表 ...
随机推荐
- RocketMQ常用命令【转】
首先进入 RocketMQ 工程,进入/RocketMQ/bin 在该目录下有个 mqadmin 脚本 . 查看帮助: 在 mqadmin 下可以查看有哪些命令 a: 查看具体命令的使用 : ...
- Tensorflows安装(cpu版安装方法)
一.说明 首先声明,本人系统是Windows10 64位,Win7未试. 本文旨在帮助园友以更简单的方式安装Tensorflow,下面介绍的是如何安装Python的Tensorflow cpu版本. ...
- ERROR: type "sum" does not exist
开发问pg中执行一个简单的语句,多次报错: > ERROR: type "sum" does not exist LINE 1: SELECT SUM ^ 看看具体的语句,其 ...
- Roberts算子
https://blog.csdn.net/likezhaobin/article/details/6892176 https://zhuanlan.zhihu.com/p/35032299 Robe ...
- Html表格和表头文字不换行
[本文出自天外归云的博客园] 希望表头中的文字和表格中的文字不换行,只需要在th和td标签加上: nowrap="nowrap"
- 配置ogg从Oracle到PostgreSQL的同步复制json数据
标签:goldengate postgresql oracle json 测试环境说明 Oracle:Windows 8.1 + Oracle 12.2.0.1.0 + GoldenGate 12.3 ...
- 原生微信小程序脚手架(支持npm)
微信小程序支持npm 为了支持生态扩展,社区贡献者可以提供更加丰富的功能,已经支持了第三方小程序开发功能,见如下地址. 微信小程序支持npm https://developers.weixin.qq. ...
- shell基础知识8-xargs命令
简介 xargs 命令应该紧跟在管道操作符之后.它使用标准输入作为主要的数据源,将从 stdin 中 读取的数据作为指定命令的参数并执行该命令. 将多行输入转换成单行输出 [root@dns-node ...
- Visual Studio + Qt:GetVarsFromMakefile任务意外失败
问题: IntelliSense报告找不到头文件: 编译时报告GetVarsFromMakefile任务意外失败. 解决: 删除从Visual Studio装的Qt插件: 从Qt官网下载最新的插件:h ...
- Nginx 配置学习
官方文档 一.概述 Nginx的配置放在配置文件nginx.conf/etc/nginx/nginx.conf中,大概的结构如下: main # 全局配置 events { # nginx工作模式配置 ...