Given a nested list of integers, return the sum of all integers in the list weighted by their depth.

Each element is either an integer, or a list -- whose elements may also be integers or other lists.

Different from the previous question where weight is increasing from root to leaf, now the weight is defined from bottom up. i.e., the leaf level integers have weight 1, and the root level integers have the largest weight.

Example 1:

Input: [[1,1],2,[1,1]]
Output: 8
Explanation: Four 1's at depth 1, one 2 at depth 2.

Example 2:

Input: [1,[4,[6]]]
Output: 17
Explanation: One 1 at depth 3, one 4 at depth 2, and one 6 at depth 1; 1*3 + 4*2 + 6*1 = 17.

这道题是之前那道 Nested List Weight Sum 的拓展,与其不同的是,这里的深度越深,权重越小,和之前刚好相反。但是解题思路没有变,还可以用 DFS 来做,由于遍历的时候不知道最终的 depth 有多深,则不能遍历的时候就直接累加结果,博主最开始的想法是在遍历的过程中建立一个二维数组,把每层的数字都保存起来,然后最后知道了 depth 后,再来计算权重和,比如题目中给的两个例子,建立的二维数组分别为:

[[1,1],2,[1,1]]:

1 1 1 1
2

[1,[4,[6]]]:

1
4
6

这样我们就能算出权重和了,参见代码如下:

解法一:

class Solution {
public:
int depthSumInverse(vector<NestedInteger>& nestedList) {
int res = ;
vector<vector<int>> all;
for (auto &a : nestedList) {
helper(a, , all);
}
for (int i = (int)all.size() - ; i >= ; --i) {
for (int j = ; j < all[i].size(); ++j) {
res += all[i][j] * ((int)all.size() - i);
}
}
return res;
}
void helper(NestedInteger& ni, int depth, vector<vector<int>>& all) {
vector<int> t;
if (depth < all.size()) t = all[depth];
else all.push_back(t);
if (ni.isInteger()) {
t.push_back(ni.getInteger());
all[depth] = t;
} else {
for (auto &a : ni.getList()) {
helper(a, depth + , all);
}
}
}
};

其实上面的方法可以简化,由于每一层的数字不用分别保存,每个数字分别乘以深度再相加,跟每层数字先相加起来再乘以深度是一样的,这样只需要一个一维数组就可以了,只要把各层的数字和保存起来,最后再计算权重和即可:

解法二:

class Solution {
public:
int depthSumInverse(vector<NestedInteger>& nestedList) {
int res = ;
vector<int> v;
for (auto &a : nestedList) {
helper(a, , v);
}
for (int i = (int)v.size() - ; i >= ; --i) {
res += v[i] * ((int)v.size() - i);
}
return res;
}
void helper(NestedInteger& ni, int depth, vector<int>& v) {
if (depth >= v.size()) v.resize(depth + );
if (ni.isInteger()) {
v[depth] += ni.getInteger();
} else {
for (auto &a : ni.getList()) {
helper(a, depth + , v);
}
}
}
};

下面这个方法就比较巧妙了,由史蒂芬大神提出来的,这个方法用了两个变量 unweighted 和 weighted,非权重和跟权重和,初始化均为0,然后如果 nestedList 不为空开始循环,先声明一个空数组 nextLevel,遍历 nestedList 中的元素,如果是数字,则非权重和加上这个数字,如果是数组,就加入 nextLevel,这样遍历完成后,第一层的数字和保存在非权重和 unweighted 中了,其余元素都存入了 nextLevel 中,此时将 unweighted 加到 weighted 中,将 nextLevel 赋给 nestedList,这样再进入下一层计算,由于上一层的值还在 unweighted 中,所以第二层计算完将 unweighted 加入 weighted 中时,相当于第一层的数字和被加了两次,这样就完美的符合要求了,这个思路又巧妙又牛B,大神就是大神啊,参见代码如下:

解法三:

class Solution {
public:
int depthSumInverse(vector<NestedInteger>& nestedList) {
int unweighted = , weighted = ;
while (!nestedList.empty()) {
vector<NestedInteger> nextLevel;
for (auto a : nestedList) {
if (a.isInteger()) {
unweighted += a.getInteger();
} else {
nextLevel.insert(nextLevel.end(), a.getList().begin(), a.getList().end());
}
}
weighted += unweighted;
nestedList = nextLevel;
}
return weighted;
}
};

下面这种算法是常规的 BFS 解法,利用上面的建立两个变量 unweighted 和 weighted 的思路,大体上没什么区别:

解法四:

class Solution {
public:
int depthSumInverse(vector<NestedInteger>& nestedList) {
int unweighted = , weighted = ;
queue<vector<NestedInteger>> q;
q.push(nestedList);
while (!q.empty()) {
int size = q.size();
for (int i = ; i < size; ++i) {
vector<NestedInteger> t = q.front(); q.pop();
for (auto a : t) {
if (a.isInteger()) unweighted += a.getInteger();
else if (!a.getList().empty()) q.push(a.getList());
}
}
weighted += unweighted;
}
return weighted;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/364

类似题目:

Nested List Weight Sum

Array Nesting

参考资料:

https://leetcode.com/problems/nested-list-weight-sum-ii/

https://leetcode.com/problems/nested-list-weight-sum-ii/discuss/83655/JAVA-AC-BFS-solution

https://leetcode.com/problems/nested-list-weight-sum-ii/discuss/83641/No-depth-variable-no-multiplication

https://leetcode.com/problems/nested-list-weight-sum-ii/discuss/114195/Java-one-pass-DFS-solution-mathematically

https://leetcode.com/problems/nested-list-weight-sum-ii/discuss/83649/Share-my-2ms-intuitive-one-pass-no-multiplication-solution

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 364. Nested List Weight Sum II 嵌套链表权重和之二的更多相关文章

  1. [LeetCode] Nested List Weight Sum II 嵌套链表权重和之二

    Given a nested list of integers, return the sum of all integers in the list weighted by their depth. ...

  2. [leetcode]364. Nested List Weight Sum II嵌套列表加权和II

    Given a nested list of integers, return the sum of all integers in the list weighted by their depth. ...

  3. LeetCode 364. Nested List Weight Sum II

    原题链接在这里:https://leetcode.com/problems/nested-list-weight-sum-ii/description/ 题目: Given a nested list ...

  4. [LeetCode] 364. Nested List Weight Sum II_Medium tag:DFS

    Given a nested list of integers, return the sum of all integers in the list weighted by their depth. ...

  5. 【LeetCode】364. Nested List Weight Sum II 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 日期 题目地址:https://leetcode ...

  6. LeetCode 339. Nested List Weight Sum (嵌套列表重和)$

    Given a nested list of integers, return the sum of all integers in the list weighted by their depth. ...

  7. 364. Nested List Weight Sum II 大小反向的括号加权求和

    [抄题]: Given a nested list of integers, return the sum of all integers in the list weighted by their ...

  8. 364. Nested List Weight Sum II

    这个题做了一个多小时,好傻逼. 显而易见计算的话必须知道当前层是第几层,因为要乘权重,想要知道是第几层又必须知道最高是几层.. 用了好久是因为想ONE PASS,尝试过遍历的时候构建STACK,通过和 ...

  9. LeetCode 339. Nested List Weight Sum

    原题链接在这里:https://leetcode.com/problems/nested-list-weight-sum/ 题目: Given a nested list of integers, r ...

随机推荐

  1. Uboot启动流程分析(三)

    1.前言 在前面的文章Uboot启动流程分析(二)中,链接如下: https://www.cnblogs.com/Cqlismy/p/12002764.html 已经对_main函数的整个大体调用流程 ...

  2. APP兼容性测试(三)测试方案设计

    1.  背景 App的兼容性问题可能会导致流失潜在的客户,为了尽量减少因兼容性问题导致的同类问题,进一步提高产品的质量,提升用户体验,所以进行兼容性测试,尽可能多的保证更多的用户都可以正常使用app. ...

  3. java jdb

    https://stackoverflow.com/questions/8155253/how-do-i-compile-in-debug-mode-netbeans-java-maven <p ...

  4. 【题解】NOIP2016提高组 复赛

    [题解]NOIP2016提高组 复赛 传送门: 玩具谜题 \(\text{[P1563]}\) 天天爱跑步 \(\text{[P1600]}\) 换教室 \(\text{[P1850]}\) 组合数问 ...

  5. io机制沉思录:分层与管理

    io模型的核心是内核kernel与应用(线程)的关系: 内核与应用的联系:数据状态信号和数据本身: 一.分层模型: 应用层——内核层——设备层 https://www.cnblogs.com/feng ...

  6. gitea/gogs在push操作时报RPC failed的问题

    原文发布于:https://www.chenxublog.com/2019/05/26/gitea-gogs-push-rpc-failed.html 最近川普在搞出口管制,GitHub也更新了相应的 ...

  7. Winform 窗体皮肤美化_IrisSkin

    1 先把IrisSkin2.dll文件添加到当前项目引用(解决方案资源管理器->当前项目->引用->右键->添加引用,找到IrisSkin2.dll文件.....之后就不用我说 ...

  8. 【spring】spring aop

    Aspect-Oriented Programming (AOP) 一.官方介绍 通过提供另一种考虑程序结构的方式,面向方面编程(AOP)补充了面向对象编程(OOP).OOP中模块化的关键单元是类,而 ...

  9. 钉钉企业内部H5微应用开发

    企业内部H5微应用开发 分为 服务端API和前端API的开发,主要涉及到进入应用免登流程和JSAPI鉴权. JSAPI鉴权开发步骤: 1.创建H5微应用 登入钉钉开放平台(https://open-d ...

  10. animations与transition

    transition过渡 和animation 动画 要知道 transition过渡和animation动画都是实现元素运动的一种方式.区别在于: transition过渡需要人为触发,例如点击触发 ...