从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三)
本文属于图神经网络的系列文章,文章目录如下:
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一)
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二)
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三)
恭喜你看到了本系列的第三篇!前面两篇博客分别介绍了基于循环的图神经网络和基于卷积的图神经网络,那么在本篇中,我们则主要关注在得到了各个结点的表示后,如何生成整个图的表示。其实之前我们也举了一些例子,比如最朴素的方法,例如图上所有结点的表示取个均值,即可得到图的表示。那有没有更好的方法呢,它们各自的优点和缺点又是什么呢,本篇主要对上面这两个问题做一点探讨。篇幅不多,理论也不艰深,请读者放心地看。
图读出操作(ReadOut)
图读出操作,顾名思义,就是用来生成图表示的。它的别名有图粗化(翻译捉急,Graph Coarsening)/图池化(Graph Pooling)。对于这种操作而言,它的核心要义在于:操作本身要对结点顺序不敏感。
这是为什么呢?这就不得不提到图本身的一些性质了。我们都知道,在欧氏空间中,如果一张图片旋转了,那么形成的新图片就不再是原来那张图片了;但在非欧式空间的图上,如果一个图旋转一下,例如对它的结点重新编号,这样形成的图与原先的图其实是一个。这就是典型的图重构(Graph Isomorphism)问题。比如下面左右两个图,其实是等价的:

为了使得同构图的表示能够保持一致,图读出的操作就需要对结点顺序不敏感。在数学上,能表达这种操作的函数也被称为对称函数。
那么我们一般如何实现图读出操作呢?笔者接下来主要介绍两种方法:基于统计的方法 与 基于学习的方法。
基于统计的方法(Statistics Category)
基于统计的方法应该是最常见的,比如说我们在求各种抽象表示所使用的 平均(mean),求和(sum),取最大(max) 等操作。这些方法简单有效,又不会带来额外的模型参数。但同时我们必须承认,这些方法的信息损失太大。假设一个图里有 1000个结点,每个结点的表示是 100维;整张图本可表达 1000 * 100 的特征,这些简单的统计函数却直接将信息量直接压缩到了100维。尤其是,在这个过程中,每一维上数据的分布特性被完全抹除。
考虑到这一点,文献[1]的作者就提出要用类似直方图的方法来对每维数据分布进行建模。具体而言,请读者先通过下面的对比图来直观感受一下直方图是如何巧妙平衡数据信息的压缩与增强的。假设我们有100个介于[-3,1]的数字,如果我们直接将它们求和,如左图所示,我们完全看不出这100个数据的分布;而如果我们将[-3, 1]等分成4个区域,比如说就是[-3,-2),[-2,-1),[-1,0) 和 [0,1)。我们分开统计各个区域的和,可以发现一点原数据的分布特征,就如下右侧子图所示:

如果要实现上面这个直方图的做法,该如何做呢?其实也很简单,我们举个例子。给定3个数据点,它们的特征向量(2维)分别是[-2, 1], [-1, 2] 和 [-1, 1]。如果直接求和,全局的特征向量是 [-2+-1+-1, 1+2+1] 即 [-4,4]。如果采取上述直方图的方式,则可能会得到一个这样的全局特征向量[-2, -1 + -1, 1 + 1, 2](第1,2维代表从原先的第1维统计的直方图,对应的区域为[-2,1),[1,2),第3,4维的含义类似)。但在实践中,文献[1]没有直接利用这种方法,而是采用高斯函数来实现名为模糊直方图(Fuzzy Histogram)的操作。

模糊直方图的原理也很简单:预先定义几个特征值区域的边界点为各个高斯分布的均值,并预设好方差。对任一特征值,根据其与各个高斯分布交点的纵坐标作为其落入该区域的数值,然后将所有数值归一化,就得到了该特征值分布在各个区间的比例。举个例子,图上的[1.8]与三个高斯分布的交点分别在0,0.3,0.9处,归一化一下,即可知该特征值最终应该用一个3维向量[0.0, 0.25, 0.75]来表示。
基于学习的方法(Learning Category)
基于统计的方法的一个坏处大概是它没办法参数化,间接地难以表示结点到图向量的这个“复杂”过程。基于学习的方法就是希望用神经网络来拟合这个过程。
采样加全连接(Sample And FC)
最简单又最直接的做法,大概就是取固定数量的结点,通过一个全连接层(Fully Connected Layer)得到图的表示。这里不论是随机采样也好,还是根据某些规则采样,都需要得到确定数量的结点,如果不够就做填充。公式也很简单直接(\(\textbf{H}^
从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三)的更多相关文章
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一)
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolutio ...
- 【GCN】图卷积网络初探——基于图(Graph)的傅里叶变换和卷积
[GCN]图卷积网络初探——基于图(Graph)的傅里叶变换和卷积 2018年11月29日 11:50:38 夏至夏至520 阅读数 5980更多 分类专栏: # MachineLearning ...
- [LeetCode]Copy List with Random Pointer &Clone Graph 复杂链表的复制&图的复制
/** * Definition for singly-linked list with a random pointer. * struct RandomListNode { * int label ...
- Nebula Graph 技术总监陈恒:图数据库怎么和深度学习框架进行结合?
引子 Nebula Graph 的技术总监在 09.24 - 09.30 期间同开源中国·高手问答的小伙伴们以「图数据库的设计和实践」为切入点展开讨论,包括:「图数据库的存储设计」.「图数据库的计算设 ...
- python生成组织架构图(网络拓扑图、graph.editor拓扑图编辑器)
Graph.Editor是一款基于HTML5技术的拓补图编辑器,采用jquery插件的形式,是Qunee图形组件的扩展项目,旨在提供可供扩展的拓扑图编辑工具, 拓扑图展示.编辑.导出.保存等功能,此外 ...
- CF1082G:G. Petya and Graph(裸的最大闭合权图)
Petya has a simple graph (that is, a graph without loops or multiple edges) consisting of n n vertic ...
- 论文解读(GMT)《Accurate Learning of Graph Representations with Graph Multiset Pooling》
论文信息 论文标题:Accurate Learning of Graph Representations with Graph Multiset Pooling论文作者:Jinheon Baek, M ...
- 各种卷积类型Convolution
从最开始的卷积层,发展至今,卷积已不再是当初的卷积,而是一个研究方向.在反卷积这篇博客中,介绍了一些常见的卷积的关系,本篇博客就是要梳理这些有趣的卷积结构. 阅读本篇博客之前,建议将这篇博客结合在一起 ...
随机推荐
- FreeMarker实现网页静态化
1.FreeMarker实现网页静态化. FreeMarker是一个用Java语言编写的模板引擎,它基于模板来生成文本输出.FreeMarker与Web容器无关,即在Web运行时,它并不知道Servl ...
- 嵌入式Linux+NetCore 笔记一
记录嵌入式Linux+NetCore培训中遇到的一些问题以及解决方法 十一放假期间发现园里大神大石头(NewLife团队)开了一个嵌入式Linux+NetCore培训,就报名参加了.更幸运的是,我刚好 ...
- Git在提交代码时出现的fatal: Authentication failed的问题
git push origin master remote: Incorrect username or password ( access token ) fatal: Authentication ...
- WEB网站发布服务器IIS报错问题终极解决方案,查到问题点
4本次错误webservice发布新服务器后,出现此错误. 解决方法: 找到dmp文件 dmp文件是啥?自己百度.简单的说就是黑匣子,记录程序崩溃前的操作,那么如何找到这个黑匣子呢? 1.启动 Win ...
- c# 模拟表单提交,post form 上传文件、数据内容
转自:https://www.cnblogs.com/DoNetCShap/p/10696277.html 表单提交协议规定:要先将 HTTP 要求的 Content-Type 设为 multipar ...
- JS运算符类型
一.运算符类型 1.算术运算符: 用于各类数值运算,包括加(+).减(-).乘(*).除(/).求余(或称模运算,%).自增(++).自减(--)共七种. 2.关系运算符: 用于比较运算.包括大于(& ...
- PHP-FPM Fastcgi 未授权访问漏洞
漏洞原理 Fastcgi Fastcgi是一个通信协议,和HTTP协议一样,都是进行数据交换的一个通道.HTTP协议是浏览器和服务器中间件进行数据交换的协议,浏览器将HTTP头和HTTP体用某个规则组 ...
- Python从零开始——函数
一:Python函数知识概览 二:函数的定义与调用 三:参数传递 四:函数返回值 五:匿名函数的定义与调用 六:变量作用域与改变变量作用域
- jmeter压测学习7-登录参数化(CSV 数据文件设置)
前言 我们在压测登录接口的时候,如果只用一个账号去设置并发压测,这样的结果很显然是不合理的,一个用户并发无法模拟真实的情况. 如果要压测登录接口,肯定得准备几百,甚至上千的账号去登录,测试的结果才具有 ...
- jmeter压测学习3-提取json数据里面的token参数关联
前言 现在很多接口的登录是返回一个json数据,token值在返回的json里面,在jmeter里面也可以直接提取json里面的值. 上一个接口返回的token作为下个接口的入参. 案例场景 我现在有 ...