UVA 167 R-The Sultan's Successors
https://vjudge.net/contest/68264#problem/R
The Sultan of Nubia has no children, so she has decided that the country will be split into up to k separate parts on her death and each part will be inherited by whoever performs best at some test. It is possible for any individual to inherit more than one or indeed all of the portions. To ensure that only highly intelligent people eventually become her successors, the Sultan has devised an ingenious test. In a large hall filled with the splash of fountains and the delicate scent of incense have been placed k chessboards. Each chessboard has numbers in the range 1 to 99 written on each square and is supplied with 8 jewelled chess queens. The task facing each potential successor is to place the 8 queens on the chess board in such a way that no queen threatens another one, and so that the numbers on the squares thus selected sum to a number at least as high as one already chosen by the Sultan. (For those unfamiliar with the rules of chess, this implies that each row and column of the board contains exactly one queen, and each diagonal contains no more than one.) Write a program that will read in the number and details of the chessboards and determine the highest scores possible for each board under these conditions. (You know that the Sultan is both a good chess player and a good mathematician and you suspect that her score is the best attainable.)
Input
Input will consist of k (the number of boards), on a line by itself, followed by k sets of 64 numbers, each set consisting of eight lines of eight numbers. Each number will be a positive integer less than 100. There will never be more than 20 boards.
Output
Output will consist of k numbers consisting of your k scores, each score on a line by itself and right justified in a field 5 characters wide.
Sample Input
1
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48
48 50 51 52 53 54 55 56
57 58 59 60 61 62 63 64
Sample Output
260
时间复杂度:$O(k * 92)$
题解:dfs
代码:
#include <bits/stdc++.h>
using namespace std; int k, sum;
int mp[10][10];
int out[10]; void dfs(int cnt, int all) {
if(cnt == 9) {
if(all > sum)
sum = all;
return ;
}
for(int i = 1; i <= 8; i ++) {
bool flag = true;
out[cnt] = i;
for(int j = 1; j < cnt; j ++) {
if(out[cnt] == out[j] || cnt - out[cnt] == j - out[j] || cnt + out[cnt] == j + out[j]) {
flag = false;
break ;
}
}
if(flag)
dfs(cnt + 1, all + mp[cnt][i]);
}
} int main() {
scanf("%d", &k);
while(k --) {
sum = 0;
for(int i = 1; i <= 8; i ++) {
for(int j = 1; j <= 8; j ++)
scanf("%d", &mp[i][j]);
}
dfs(1, 0);
printf("%5d\n", sum);
}
return 0;
}
UVA 167 R-The Sultan's Successors的更多相关文章
- Uva 167 The Sultan's Successors(dfs)
题目链接:Uva 167 思路分析:八皇后问题,采用回溯法解决问题. 代码如下: #include <iostream> #include <string.h> using n ...
- uva167 The Sultan's Successors
The Sultan's Successors Description The Sultan of Nubia has no children, so she has decided that the ...
- UVa 167(八皇后)、POJ2258 The Settlers of Catan——记两个简单回溯搜索
UVa 167 题意:八行八列的棋盘每行每列都要有一个皇后,每个对角线上最多放一个皇后,让你放八个,使摆放位置上的数字加起来最大. 参考:https://blog.csdn.net/xiaoxiede ...
- The Sultan's Successors UVA - 167
the squares thus selected sum to a number at least as high as one already chosen by the Sultan. (For ...
- uva 167 - The Sultan's Successors(典型的八皇后问题)
这道题是典型的八皇后问题,刘汝佳书上有具体的解说. 代码的实现例如以下: #include <stdio.h> #include <string.h> #include < ...
- uva167 - The Sultan's Successors
题意:八皇后问题的扩展.8*8棋盘上每个格子都有一个整数,要求8个皇后所在格子的数字之后最大 解法一,回溯: 用vis数组记录 列,主对角(y-x), 副对角(y+x) 访问情况 #include ...
- UVA The Sultan's Successors
题目例如以下: The Sultan's Successors The Sultan of Nubia has no children, so she has decided that thecou ...
- UVA题目分类
题目 Volume 0. Getting Started 开始10055 - Hashmat the Brave Warrior 10071 - Back to High School Physics ...
- ACM-ICPC Dhaka Regional 2012 题解
B: Uva: 12582 - Wedding of Sultan 给定一个字符串(仅由大写字母构成)一个字母表示一个地点,经过这个点或离开这个点都输出这个地点的字母) 问: 每一个地点经过的次数(维 ...
随机推荐
- Java实例 Part1:Java基础输出语句
** Part1:Java基础输出语句 ** 第一部分最基础,就是标准的输出语句. ps:(目前还没熟悉这个编辑器,先尝试一下) Example01 : 输出"hello world&quo ...
- KEIL MDK-ARM Version 5.26正式版开发工具下载
Keil MDK最新版本已经出来啦,ARM开发工具MDK-ARM Version 5.26地址:http://www.myir-tech.com/soft.asp?id=1141,需要的可以去下载哦 ...
- 《JQuery常用插件教程》系列分享专栏
<JQuery常用插件教程>已整理成PDF文档,点击可直接下载至本地查阅https://www.webfalse.com/read/201719.html 文章 使用jquery插件实现图 ...
- react--基本用法
1.安装了babel 但是终端执行 babel src --out-dir build命令时说"babel:command is not found" 经百度,找到solution ...
- Java设计模式(9)——结构型模式之装饰模式(Decorator)
一.概述 动态地给一个对象添加一些额外的职责.就增加功能来说, Decorator模式相比生成子类更为灵活.该模式以对客 户端透明的方式扩展对象的功能. UML简图 角色 在持有Component的引 ...
- Splay初学习
例题传送门 听YZ哥哥说Splay是一种很神奇的数据结构,所以学习了一下它的最基本操作.O(1)的Spaly. 伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它能在O(logn)内完成 ...
- 北京Uber优步司机奖励政策(2月24日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- dvs-panotracking编译运行
编译运行dvs-panotracking > 编译dvs-panotracking之前首先需要安装imageutilities . 源码下载 https://github.com/VLOGrou ...
- UItraIso 制作ubentu 系统失败
设备忙,请退出所有正在运行的应用程序,按确定按钮重试. 解决方法: 不要使用UItraIso,不知道为什么一直不行.重启了电脑几次都不行.用Rufus吧 https://rufus.ie/ 注意: r ...
- SpringBoot-03:SpringBoot+Idea热部署
------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥------------- 所谓热部署,就是在项目启动中,修改class类中做的修改操作,无需重新启动项目,就可以变更,在网页展示中有 ...