mxnet 神经网络训练和预测
https://mxnet.incubator.apache.org/tutorials/basic/module.html
import logging
import random
logging.getLogger().setLevel(logging.INFO) import mxnet as mx
import numpy as np mx.random.seed(1234)
np.random.seed(1234)
random.seed(1234) # 准备数据
fname = mx.test_utils.download('https://s3.us-east-2.amazonaws.com/mxnet-public/letter_recognition/letter-recognition.data')
data = np.genfromtxt(fname=fname,delimiter=',')[:,1:]
label = np.array([ord(l.split(',')[0])-ord('A') for l in open(fname, 'r')]) batch_size = 32
ntrain = int(data.shape[0]*0.8) train_iter = mx.io.NDArrayIter(data[:ntrain,:],label[:ntrain],batch_size,shuffle=True)
val_iter = mx.io.NDArrayIter(data[ntrain:,:],label[ntrain:],batch_size) # 定义网络
net = mx.sym.Variable('data')
net = mx.sym.FullyConnected(net, name='fc1', num_hidden=64)
net = mx.sym.Activation(net, name='relu1', act_type="relu")
net = mx.sym.FullyConnected(net, name='fc2', num_hidden=26)
net = mx.sym.SoftmaxOutput(net, name='softmax')
mx.viz.plot_network(net, node_attrs={"shape":"oval","fixedsize":"false"}) # # 创建模块
mod = mx.mod.Module(symbol=net,
context=mx.cpu(),
data_names=['data'],
label_names=['softmax_label']) # # 中层接口
# # 训练模型
# mod.bind(data_shapes=train_iter.provide_data,label_shapes=train_iter.provide_label)
# mod.init_params(initializer=mx.init.Uniform(scale=.1))
# mod.init_optimizer(optimizer='sgd',optimizer_params=(('learning_rate',0.1),))
# metric = mx.metric.create('acc')
#
# for epoch in range(100):
# train_iter.reset()
# metric.reset()
# for batch in train_iter:
# mod.forward(batch,is_train=True)
# mod.update_metric(metric,batch.label)
# mod.backward()
# mod.update()
# print('Epoch %d,Training %s' % (epoch,metric.get())) # fit 高层接口
train_iter.reset()
mod = mx.mod.Module(symbol=net,
context=mx.cpu(),
data_names=['data'],
label_names=['softmax_label']) mod.fit(train_iter,
eval_data=val_iter,
optimizer='sgd',
optimizer_params={'learning_rate':0.1},
eval_metric='acc',
num_epoch=10) # 预测和评估
y = mod.predict(val_iter)
assert y.shape == (4000,26) # 评分
score = mod.score(val_iter,['acc'])
print("Accuracy score is %f"%(score[0][1]))
assert score[0][1] > 0.76, "Achieved accuracy (%f) is less than expected (0.76)" % score[0][1] # 保存和加载
# 构造一个回调函数保存检查点
model_prefix = 'mx_mlp'
checkpoint = mx.callback.do_checkpoint(model_prefix) mod = mx.mod.Module(symbol=net)
mod.fit(train_iter,num_epoch=5,epoch_end_callback=checkpoint) sym, arg_params, aux_params = mx.model.load_checkpoint(model_prefix, 3)
assert sym.tojson() == net.tojson() # assign the loaded parameters to the module
mod.set_params(arg_params, aux_params) mod = mx.mod.Module(symbol=sym)
mod.fit(train_iter,
num_epoch=21,
arg_params=arg_params,
aux_params=aux_params,
begin_epoch=3)
assert score[0][1] > 0.77, "Achieved accuracy (%f) is less than expected (0.77)" % score[0][1]
mxnet 神经网络训练和预测的更多相关文章
- 吴裕雄 python 神经网络——TensorFlow 使用卷积神经网络训练和预测MNIST手写数据集
import tensorflow as tf import numpy as np from tensorflow.examples.tutorials.mnist import input_dat ...
- 利用Matlab神经网络计算包预测近四天除湖北外新增确诊人数:拐点已现
数据来源: 国家卫健委 已经7连降咯! 1.20-2.10图示(更新中): 神经网络训练并预测数据: clear %除湖北以外全国新增确诊病例数 2020.1.20-2.9 num=[5,44,62, ...
- ResNet网络的训练和预测
ResNet网络的训练和预测 简介 Introduction 图像分类与CNN 图像分类 是指将图像信息中所反映的不同特征,把不同类别的目标区分开来的图像处理方法,是计算机视觉中其他任务,比如目标检测 ...
- 神经网络训练中的Tricks之高效BP(反向传播算法)
神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 ...
- mxnet的训练过程——从python到C++
mxnet的训练过程--从python到C++ mxnet(github-mxnet)的python接口相当完善,我们可以完全不看C++的代码就能直接训练模型,如果我们要学习它的C++的代码,从pyt ...
- 神经网络训练tricks
神经网络构建好,训练不出好的效果怎么办?明明说好的拟合任意函数(一般连续)(为什么?可以参考http://neuralnetworksanddeeplearning.com/),说好的足够多的数据(h ...
- tesorflow - create neural network+结果可视化+加速神经网络训练+Optimizer+TensorFlow
以下仅为了自己方便查看,绝大部分参考来源:莫烦Python,建议去看原博客 一.添加层 def add_layer() 定义 add_layer()函数 在 Tensorflow 里定义一个添加层的函 ...
- TensorFlow实战第三课(可视化、加速神经网络训练)
matplotlib可视化 构件图形 用散点图描述真实数据之间的关系(plt.ion()用于连续显示) # plot the real data fig = plt.figure() ax = fig ...
- Pytorch学习记录-torchtext和Pytorch的实例( 使用神经网络训练Seq2Seq代码)
Pytorch学习记录-torchtext和Pytorch的实例1 0. PyTorch Seq2Seq项目介绍 1. 使用神经网络训练Seq2Seq 1.1 简介,对论文中公式的解读 1.2 数据预 ...
随机推荐
- WeUI logo专为微信设计的 UI 库 WeUI
http://www.oschina.net/p/weui?fromerr=FnwHyWAb http://weui.github.io/weui/
- PHP学习6——常用函数
主要内容: 字符串处理函数 时间和日期处理函数 字符串处理函数 echo输出字符串 print输出字符串,带返回值1 print.php <?php var_dump(print("有 ...
- 1.Windows服务-->添加一个简单的服务
Windows服务应用程序是一种需要长期运行的应用程序,它对于服务器环境特别适合.它没有用户界面,并且也不会产生任何可视输出.任何用户消息都会被 写进Windows事件日志.计算机启动时,服务会自动开 ...
- RabbitMQ - 任务队列
这次我们试着实现这样一个小程序: 嗯,就是任务队列(task queue).不是将任务集中在一堆并一直等到所有任务一并完成为止,而是将每一个任务封装为一个消息,并将其发送到队列,后台的workers就 ...
- 二分查找——Python实现
一.排序思想 二分(折半)查找思想请参见:https://www.cnblogs.com/luomeng/p/10585291.html 二.python实现 def binarySearchDemo ...
- 从官网下载mod_jk.so
最近在搞apache和tomcat集群,这里就要用到mol_jk.so,在官网找了很久才知道在哪里下载,英语是硬伤啊. 1.打开tomcat官网 http://tomcat.apache.org/ 2 ...
- js实现字体和容器宽高随窗口改变
用于字体大小和容器的宽高字体和宽高设为rem就可以了 var html = document.documentElement; function fonts(){ var hW = html.offs ...
- css 元素居中各种办法
一:通过弹性布局<style> #container .box{ width: 80px; height: 80px; position: absolute; background:red ...
- 开启VS2017之旅
- idea导入项目报错:文档中根元素前面的标记必须格式正确
今天从git上面导入项目之后,由于是上周刚刚提交过的,本地也没有什么修改,于是就从gitlab上面直接下载下来了.可是项目启动时候,报错了... 文档中根元素前面的标记必须格式正确 想想 原来是上次提 ...