4200: [Noi2015]小园丁与老司机

Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special Judge
Submit: 106  Solved: 58
[Submit][Status][Discuss]

Description

小园丁 Mr. S 负责看管一片田野,田野可以看作一个二维平面。田野上有 nn 棵许愿树,编号 1,2,3,…,n1,2,3,…,n,每棵树可以看作平面上的一个点,其中第 ii 棵树 (1≤i≤n1≤i≤n) 位于坐标 (xi,yi)(xi,yi)。任意两棵树的坐标均不相同。
老司机 Mr. P 从原点 (0,0)(0,0) 驾车出发,进行若干轮行动。每一轮,Mr. P 首先选择任意一个满足以下条件的方向:
为左、右、上、左上 45∘45∘ 、右上 45∘45∘ 五个方向之一。
沿此方向前进可以到达一棵他尚未许愿过的树。
完成选择后,Mr. P 沿该方向直线前进,必须到达该方向上距离最近的尚未许愿的树,在树下许愿并继续下一轮行动。如果没有满足条件的方向可供选择,则停止行动。他会采取最优策略,在尽可能多的树下许愿。若最优策略不唯一,可以选择任意一种。
不幸的是,小园丁 Mr. S 发现由于田野土质松软,老司机 Mr. P 的小汽车在每轮行进过程中,都会在田野上留下一条车辙印,一条车辙印可看作以两棵树(或原点和一棵树)为端点的一条线段。
在 Mr. P 之后,还有很多许愿者计划驾车来田野许愿,这些许愿者都会像 Mr. P 一样任选一种最优策略行动。Mr. S 认为非左右方向(即上、左上 45∘45∘ 、右上 45∘45∘ 三个方向)的车辙印很不美观,为了维护田野的形象,他打算租用一些轧路机,在这群许愿者到来之前夯实所有“可能留下非左右方向车辙印”的地面。
“可能留下非左右方向车辙印”的地面应当是田野上的若干条线段,其中每条线段都包含在某一种最优策略的行进路线中。每台轧路机都采取满足以下三个条件的工作模式:
从原点或任意一棵树出发。
只能向上、左上 45∘45∘ 、右上 45∘45∘ 三个方向之一移动,并且只能在树下改变方向或停止。
只能经过“可能留下非左右方向车辙印”的地面,但是同一块地面可以被多台轧路机经过。
现在 Mr. P 和 Mr. S 分别向你提出了一个问题:
请给 Mr .P 指出任意一条最优路线。
请告诉 Mr. S 最少需要租用多少台轧路机。
 

Input

输入文件的第 1 行包含 1 个正整数 n,表示许愿树的数量。

接下来 n 行,第 i+1 行包含 2个整数 xi,yi,中间用单个空格隔开,表示第 i 棵许愿树的坐标。
 

Output

输出文件包括 3 行。
输出文件的第 1 行输出 1 个整数 m,表示 Mr. P 最多能在多少棵树下许愿。
输出文件的第 2 行输出 m 个整数,相邻整数之间用单个空格隔开,表示 Mr. P 应该依次在哪些树下许愿。
输出文件的第 3 行输出 1 个整数,表示 Mr. S 最少需要租用多少台轧路机。
 

Sample Input

6
-1 1
1 1
-2 2
0 8
0 9
0 10

Sample Output

3
2 1 3
3

explanation

最优路线 2 条可许愿 3 次:(0,0)→(1,1)→(−1,1)→(−2,2)(0,0)→(1,1)→(−1,1)→(−2,2) 或 (0,0)→(0,8)→(0,9)→(0,10)(0,0)→(0,8)→(0,9)→(0,10)。 至少 3 台轧路机,路线是 (0,0)→(1,1)(0,0)→(1,1),(−1,1)→(−2,2)(−1,1)→(−2,2) 和 (0,0)→(0,8)→(0,9)→(0,10)(0,0)→(0,8)→(0,9)→(0,10)。

HINT

Source

 

[Submit][Status][Discuss]

HOME Back

第一问按Y排序,map记录每个向上、左、右方向最近的点,对于y坐标相同的点按x排序,如果$x_i>x_j$,一定是从j走到最左在走回i,如果$x_i<x_j$,一定是从j走到最走在走回i。维护一个单调栈即可。

第二问只需要在DP的同时记录决策点,输出路径。

第三问相当于判断每条边是否可以存在于最长路中,然后下界为1跑最小流。如果判断每条边可以倒着DP一遍考虑是否两端和等于ans。注意,倒着DP和正着DP会有差别。

 #include<map>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 50050
#define S (n+1)
#define T (n+2)
#define SS (n+3)
#define TT (n+4)
using namespace std;
struct dp{int x,y,id,f,from;bool f1,f2;}a[N],b[N];
int n,f[N],g[N],X[N],Y[N];
int head[N],tot,d[N];
struct edge{int next,to,v;}e[];
inline void add(int u,int v,int w)
{
e[tot]=(edge){head[u],v,w};
head[u]=tot++;
e[tot]=(edge){head[v],u,};
head[v]=tot++;
}
int SAP(int start,int end,int n)
{
int u,neck,tmp,i,flow_ans=,cur_flow;
int numh[N],d[N],cure[N],pre[N];
memset(d,,sizeof(d));
memset(numh,,sizeof(numh));
memset(pre,-,sizeof(pre));
for(int i=;i<=n;i++)
cure[i]=head[i];
numh[]=n;
u=start;
while(d[start]<n)
{
if(u==end)
{
cur_flow=1e9;
for(i=start;i!=end;i=e[cure[i]].to)
if(cur_flow>e[cure[i]].v)
neck=i,cur_flow=e[cure[i]].v;
for(i=start;i!=end;i=e[cure[i]].to)
{
tmp=cure[i];
e[tmp].v-=cur_flow;
e[tmp^].v+=cur_flow;
}
flow_ans+=cur_flow;
u=neck;
}
for(i=cure[u];i!=-;i=e[i].next)
if(e[i].v&&d[u]==d[e[i].to]+)break;
if(i!=-)
{
cure[u]=i;
pre[e[i].to]=u;
u=e[i].to;
}
else
{
if(--numh[d[u]]==)break;
cure[u]=head[u];
for(tmp=n,i=head[u];i!=-;i=e[i].next)
if(e[i].v)tmp=min(tmp,d[e[i].to]);
d[u]=tmp+;
numh[d[u]]++;
if(u!=start)u=pre[u];
}
}
return flow_ans;
}
bool operator<(dp x,dp y)
{
if(x.y!=y.y)return x.y<y.y;
return x.x<y.x;
}
inline void update(int i,int j)
{
if(a[i].f<a[j].f+)
a[i].f=a[j].f+,a[i].from=j,a[i].f1=;
}
void print(int x,bool f)
{
if(x==n+)return;
if(!f)print(a[x].from,a[x].f1);
else print(b[x].from,);
if(!a[x].f1||f)
printf("%d ",a[x].id);
else if(!a[x].f2)
{
for(int i=a[x].from-;a[i].y==a[x].y;i--)
printf("%d ",a[i].id);
for(int i=a[x].from+;i<=x;i++)
printf("%d ",a[i].id);
}
else
{
for(int i=a[x].from+;a[i].y==a[x].y;i++)
printf("%d ",a[i].id);
for(int i=a[x].from-;i>=x;i--)
printf("%d ",a[i].id);
}
}
map<int,int>L,R,U;
void solve(int ans)
{
memset(head,-,sizeof(head));
L.clear();
R.clear();
U.clear();
for(int i=;i<=n;i++)
X[i]=a[n+-i].x,Y[i]=a[n+-i].y;
X[n+]=Y[n+]=;
for(int i=;i<=n;i++)f[i]=;
for(int l=,r,x;l<=n+;l=r+)
{
for(r=l;r<=n&&Y[r+]==Y[r];r++);
for(int i=l;i<=r;i++)
{
x=U[X[i]];
if(x)
{
f[i]=max(f[i],f[x]+);
if((a[n+-i].f||i==n+)&&a[n+-i].f+f[x]==ans)
{
add(n+-x,n+-i,1e9);
d[n+-x]--;d[n+-i]++;
}
}
x=L[X[i]+Y[i]];
if(x)
{
f[i]=max(f[i],f[x]+);
if((a[n+-i].f||i==n+)&&a[n+-i].f+f[x]==ans)
{
add(n+-x,n+-i,1e9);
d[n+-x]--;d[n+-i]++;
}
}
x=R[X[i]-Y[i]];
if(x)
{
f[i]=max(f[i],f[x]+);
if((a[n+-i].f||i==n+)&&a[n+-i].f+f[x]==ans)
{
add(n+-x,n+-i,1e9);
d[n+-x]--;d[n+-i]++;
}
}
U[X[i]]=i;
L[X[i]+Y[i]]=i;
R[X[i]-Y[i]]=i;
}
for(int i=l;i<=r;i++)g[i]=f[i];
int maxid=;
for(int i=l+;i<=r;i++)
{
if(!maxid||g[i-]+(r-i+)>g[maxid]+(r-maxid))maxid=i-;
if(f[i]<g[maxid]+(r-maxid))
f[i]=g[maxid]+(r-maxid);
}
maxid=;
for(int i=r-;i>=l;i--)
{
if(!maxid||g[i+]+(i+-l)>g[maxid]+(maxid-l))maxid=i+;
if(f[i]<g[maxid]+(maxid-l))
f[i]=g[maxid]+(maxid-l);
}
}
for(int i=;i<=n;i++)
add(S,i,1e9),add(i,T,1e9);
for(int i=;i<=n;i++)
if(d[i]>)add(SS,i,d[i]);
else add(i,TT,-d[i]);
SAP(SS,TT,TT+);
add(T,S,1e9);
SAP(SS,TT,TT+);
printf("%d\n",e[tot-].v);
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d",&a[i].x,&a[i].y),a[i].id=i;
sort(a+,a+n+);
U[]=L[]=R[]=n+;
for(int l=,r,x;l<=n;l=r+)
{
for(r=l;r<n&&a[r+].y==a[r].y;r++);
for(int i=l;i<=r;i++)
{
x=U[a[i].x];
if(x)update(i,x);
x=L[a[i].x+a[i].y];
if(x)update(i,x);
x=R[a[i].x-a[i].y];
if(x)update(i,x);
}
for(int i=l;i<=r;i++)b[i]=a[i];
int maxid=;
for(int i=l+;i<=r;i++)
{
if(b[i-].f>b[maxid].f)maxid=i-;
if(maxid&&a[i].f<b[maxid].f+(i-l))
{
a[i].f=b[maxid].f+(i-l);
a[i].f1=;a[i].f2=;a[i].from=maxid;
}
}
maxid=;
for(int i=r-;i>=l;i--)
{
if(b[i+].f>b[maxid].f)maxid=i+;
if(maxid&&a[i].f<b[maxid].f+(r-i))
{
a[i].f=b[maxid].f+(r-i);
a[i].f1=;a[i].f2=;a[i].from=maxid;
}
}
for(int i=l;i<=r;i++)
if(a[i].f)
{
U[a[i].x]=i;
L[a[i].x+a[i].y]=i;
R[a[i].x-a[i].y]=i;
}
}
int ans=,id=n+;
for(int i=;i<=n;i++)
if(a[i].f>ans)
ans=a[i].f,id=i;
printf("%d\n",ans);
print(id,);puts("");
solve(ans);
}

[BZOJ4200][Noi2015]小园丁与老司机的更多相关文章

  1. BZOJ4200 NOI2015小园丁与老司机(动态规划+上下界网络流)

    一看上去就是一个二合一的题.那么先解决第一部分求最优路线(及所有可能在最优路线上的线段). 由于不能往下走,可以以y坐标作为阶段.对于y坐标不同的点,我们将可以直接到达的两点连边,显然这样的边的个数是 ...

  2. UOJ#132&bzoj4200[Noi2015]小园丁与老司机

    看,这是一个传送门 Part A 把坐标离散化,按照纵坐标为第一关键字,横坐标为第二关键字排序 以$f_i$记录来到$i$这个点最多经过点数,那么答案显而易见就是$f_i$加上该层点数 转移的话就是分 ...

  3. bzoj4200: [Noi2015]小园丁与老司机(可行流+dp)

    传送门 这该死的码农题…… 题解在这儿->这里 //minamoto #include<iostream> #include<cstdio> #include<cs ...

  4. [UOJ#132][BZOJ4200][luogu_P2304][NOI2015]小园丁与老司机

    [UOJ#132][BZOJ4200][luogu_P2304][NOI2015]小园丁与老司机 试题描述 小园丁 Mr. S 负责看管一片田野,田野可以看作一个二维平面.田野上有 \(n\) 棵许愿 ...

  5. 【BZOJ4200】[Noi2015]小园丁与老司机 DP+最小流

    [BZOJ2839][Noi2015]小园丁与老司机 Description 小园丁 Mr. S 负责看管一片田野,田野可以看作一个二维平面.田野上有 nn 棵许愿树,编号 1,2,3,…,n1,2, ...

  6. luogu P2304 [NOI2015]小园丁与老司机 dp 上下界网络流

    LINK:小园丁与老司机 苦心人 天不负 卧薪尝胆 三千越甲可吞吴 AC的刹那 真的是泪目啊 很久以前就写了 当时记得特别清楚 写到肚子疼.. 调到胳膊疼.. ex到根不不想看的程度. 当时wa了 一 ...

  7. uoj132/BZOJ4200/洛谷P2304 [Noi2015]小园丁与老司机 【dp + 带上下界网络流】

    题目链接 uoj132 题解 真是一道大码题,,,肝了一个上午 老司机的部分是一个\(dp\),观察点是按\(y\)分层的,而且按每层点的上限来看可以使用\(O(nd)\)的\(dp\),其中\(d\ ...

  8. BZOJ4200 & 洛谷2304 & UOJ132:[NOI2015]小园丁与老司机——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4200 https://www.luogu.org/problemnew/show/P2304 ht ...

  9. 【bzoj4200】[Noi2015]小园丁与老司机 STL-map+dp+有上下界最小流

    题目描述 小园丁 Mr. S 负责看管一片田野,田野可以看作一个二维平面.田野上有 nn 棵许愿树,编号 1,2,3,…,n1,2,3,…,n,每棵树可以看作平面上的一个点,其中第 ii 棵树 (1≤ ...

随机推荐

  1. DOM0编程与基础方法

    ## 这里记录一下DOM编程的基础与方法----### DOM 的O:对象 objectO表示Object,对象的意思.JavaScript中对象可以分为三种类型1. 用户定义对象(user-defi ...

  2. Sicily 1150: 简单魔板(BFS)

    此题可以使用BFS进行解答,使用8位的十进制数来储存魔板的状态,用BFS进行搜索即可 #include <bits/stdc++.h> using namespace std; int o ...

  3. bzoj2928: [Poi1999]飞弹

    惨啊…… 被卡常是一种什么感受&…… 很明显的分治. 我们首先可以找到所有点中的最低点,然后对所有点进行一次极角排序,选取一个点使得他各侧飞弹和地堡一样多,并对两侧继续进行分治. 很容易证明这 ...

  4. em与px换算关系以及常用列表

    1.任意浏览器的默认字体大小都是16px.2.所有未经调整的浏览器都符合: 1em=16px 12px=0.75em 10px=0.625em3.为了简化font-size的换算,在body选择器中声 ...

  5. nodejs 笔记

    安装环境----------------------------------------------------------------1,安装nodejs 起步------------------- ...

  6. 设计模式--代理模式Proxy(结构型)

    一.代理模式 为其他对象提供一种代理以控制对这个对象的访问. 代理模式分为四种: 远程代理:为了一个对象在不同的地址空间提供局部代表.这样可以隐藏一个对象存在于不同地址空间的事实. 虚拟代理:根据需要 ...

  7. 【原创】node+express+socket搭建一个实时推送应用

    技术背景 Web领域的实时推送技术,也被称作Realtime技术.这种技术要达到的目的是让用户不需要刷新浏览器就可以获得实时更新. 应用场景: 监控系统:后台硬件热插拔.LED.温度.电压发生变化 即 ...

  8. webServer-----Spring 集成cxf笔录

    目前webserver主要有俩中方式:1,传统的webserver标准集成方式-生成WSDL的xml文档.       2, 基于restful风格的webserver java RESTful We ...

  9. 关于 Java(TM) Platform SE binary 已停止工作 的解决方法

    一.问题描述 昨天晚上Myeclipse还用着好好的,今天早上打开工程,只要运行就卡住,大半天弹出个消息窗口:Java(TM) Platform SE binary 已停止工作. 如图 关闭Myecl ...

  10. pk8和x509.pem转换成keystore

    转自:http://www.cnblogs.com/platte/p/3511814.html 一 在github上下载工具 https://github.com/getfatday/keytool- ...