常用层

常用层对应于core模块,core内部定义了一系列常用的网络层,包括全连接、激活层等

Dense层

keras.layers.core.Dense(units, activation=None, use_bias=True, kernel_initializer='glorot_uniform', bias_initializer='zeros', kernel_regularizer=None, bias_regularizer=None, activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

Dense就是常用的全连接层,所实现的运算是output = activation(dot(input ,kernel) + bias ).其中activation是逐元素计算的激活函数,kernel是本层的权值矩阵,bias为偏置向量,只有当use_bias=True才会添加。

如果本层的输入数据的维度大于2,则会先被压为与kernel相匹配的大小。

#as first Layer in a sequential model:
#as first Layer in a sequential model:
model = Sequential()
model.add(Dense(32, input_shape=(16,)))
#now the model will take as input arrays of shape(* , 16)
#and output arrays of shape (* , 32)
#after the first layer , you don't need to specify
#the size of the input anymore:
model.add(Dense(32))
  • units:大于0的整数,代表该层的输出维度
  • activation:激活函数,为预定义的激活函数名,或逐元素(element-wise)的Theano函数。如果不指定该参数,将不会使用任何激活函数(即使用线性激活函数:a(x) = x)
  • use_bias:布尔值,是否使用偏置项
  • kernel_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。
  • bias_initializer:权值初始化方法,为预定义初始化方法名的字符串,或用于初始化权重的初始化器。
  • kernel_regularizer:施加在权重上的正则项,为Regularizer对象
  • bias_regularizer:施加在偏置向量上的正则项,为Regularizer对象
  • activity_regularizer:施加在输出上的正则项,为Regularizer对象
  • kernel_constraints:施加在权重上的约束项,为Constraints对象
  • bias_constraints:施加在偏置上的约束项,为Constraints对象

输入

形如(batch_size,.......,input_dim)的nD张量,最常见的情况为(batch_size,input_dim)的2D张量

输出

形如(batch_size,..........,units)的nD张量,最常见的情况为(batch_size,units)的2D张量

Activation层

keras.layers.core.Activation(activation)

激活层对一个层的输出施加激活函数

参数

  • activation:将要使用的激活函数,为预定义激活函数名或一个Tensorflow/theano的函数。

输入shape

任意,当使用激活层作为第一层时,要指定input_shape

输出shape

与输入shape相同

Dropout层

keras.layers.core.Dropout(rate , noise_shape=None ,seed=None)

为输入数据施加Dropout。Dropout将在训练过程中每次更新参数时按一定概率(rate)随机断开输入神经元,Dropout层用于防止过拟合。

参数

  • rate:0~1的浮点数,控制需要断开的神经元的比例
  • noise_shape:整数张量,为将要应用在输入上的二值Dropout mask的shape,例如你的输入为(batch_size,timesteps,features),并且你希望在各个时间步上的Dropout mask都相同,则可传入noise_shape=(batch_size,1,features)
  • seed:整数,使用随机数种子

Flatten层

keras.layers.core.Flatten()

Flatten层用来将输入“压平”,即把多维的输入一维化,常用在从卷积层到全连接层的过度。Flatten不影响batch的大小。

例子

model = Sequential()
model.add(Convolution2D(64,3,3,border_mode='same',input_shape=(3,32,32))) #now:model.output_shape ==(None,64,32,32) model.add(Flatten())
#now:model.output_shape == (None,65536)

Reshape层

keras.layers.core.Reshape(target_shape)

Reshape层用来将输入shape转换为特定的shape

参数

  • target_shape:目标shape,为整数的tuple,不包含样本数目的维度(batch大小)

输入shape

任意,但输入的shape必须固定。当使用该层为模型首层时,需要指定input_shape参数

输出shape

(batch_size,)+target_shape

例子

#as first Layer in a Sequential model
model = Sequential()
model.add(Reshape((3,4),input_shape=(12,)))
#now:model.output_shape == (None,3,4)
#note: 'None' is the batch dimension # as intermediate layer in a Sequential model
model.add(Reshape((6, 2)))
# now: model.output_shape == (None, 6, 2) # also supports shape inference using `-1` as dimension
model.add(Reshape((-1, 2, 2)))
# now: model.output_shape == (None, 3, 2, 2)

Permute层

keras.layers.core.Permute(dims)

Permute层将输入的维度按照给定模式进行重排,例如,当需要将RNN和CNN网络连接时,可能会用到该层。

参数

  • dims:整数tuple,指定重排的模式,不包含样本数的维度。重排模式的下标从1开始。例如(2,1)代表将输入的第二个维度重排到第二个维度

例子

model = Sequential()
model.add(Permute((2,1), input_shape=(10,64)))
#now:model.output_shape == (None, 64,10)
#note: 'None' is the batch dimension

输入shape

任意,当使用激活层作为第一层时,要指定input_shape

输出shape

与输入相同,但是其维度按照指定的模式重新排列

RepeatVecor层

keras.layers.core.RepeatVector(n)

RepeatVector层将输入重复n次

参数

  • n:整数,重复的次数

输入shape

形如(nb_samples,features)的2D张量

输出shape

形如(nb_samples,features)的3D张量

例子

model = Sequential()
model.add(Dense(32,input_dim=32)) #now:model.output_shape == (None,32)
#note:'None' is the batch dimension model.add(RepeatVector(3))
#now:model.output_shape == (None,3,32)

Lambda层

keras.layers.core.Lambda(function,output_shape,mask=None,arguments=None)

本函数用以对上一层的输出施以任何Theano/TensorFlow表达式

参数

  • function:要实现的函数,该函数仅接受一个变量,即上一层的输出
  • output_shape:函数应该返回的值的shape,可以是一个tuple,也可以是一个根据输入shape计算输出的shape的函数
  • mask:掩膜
  • arguments:可选,字典,用来记录向函数中传递的其他关键字参数

例子

# add a x -> x^2 layer
model.add(Lambda(lambda x: x ** 2)) def antirectifier(x):
x -= K.mean(x, axis=1, keepdims=True)
x = K.l2_normalize(x, axis=1)
pos = K.relu(x)
neg = K.relu(-x)
return K.concatenate([pos, neg], axis=1) def antirectifier_output_shape(input_shape):
shape = list(input_shape)
assert len(shape) == 2 # only valid for 2D tensors
shape[-1] *= 2
return tuple(shape) model.add(Lambda(antirectifier,
output_shape=antirectifier_output_shape))

输入shape

任意,当使用该层作为第一层时,要指定input_shape

输出shape

由output_shape参数指定的输出shape,当使用tensorflow时可自动推断

ActivityRegularizer层

keras.layers.core.ActivityRegularization(l1=0.0,l2=0.0)

经过本层的数据不会有任何变化,但会基于其激活值更新损失函数值

参数

  • l1:1范数正则因子(正浮点数)
  • l2:2范数正则因子(正浮点数)

输入shape

任意,当使用该层作为第一层时,要指定input_shape

输出shape

与输入shape相同

Masking层

keras.layers.core.Masking(mask_value=0.0)

使用给定的值对输入的序列信号进行“屏蔽”,用以定位需要跳过的时间步

对于输入张量的时间步,即输入张量的第1维度(维度从0开始算),如果输入张量在该时间步上都等于mask_value,则该时间步在模型接下来的所有层(只需要支持masking)被跳过(屏蔽)。

如果模型接下来的一些层不支持masking,却接受到masking过的数据,则抛出异常,则抛出异常。

例子

考虑输入数据x是一个形如(samples,timesteps,features)的张量,现将其送入LSTM层。因为你缺少时间步为3和5的信号,所以你希望将其掩盖。这时候应该:

  • 赋值x[:,3,:] = 0. , x[:,5,:] = 0.
  • 在LSTM层之前插入mask_value=0.的Masking
model = Sequential()
model.add(Masking(mask_value=0,input_shape=(timesteps,features)))
model.add(LSTM(32))

Keras网络层之常用层Core的更多相关文章

  1. Keras网络层之卷积层

    卷积层 Cov1D层 keras.layers.convolutional.Conv1D(filters, kernel_size, strides=1, padding='valid', dilat ...

  2. keras_基本网络层结构(1)_常用层

    参考文献: https://blog.csdn.net/sinat_26917383/article/details/72857454 http://keras-cn.readthedocs.io/e ...

  3. keras模块学习之层(layer)的使用-笔记

    本笔记由博客园-圆柱模板 博主整理笔记发布,转载需注明,谢谢合作! keras的层主要包括: 常用层(Core).卷积层(Convolutional).池化层(Pooling).局部连接层.递归层(R ...

  4. 【转】Caffe初试(七)其它常用层及参数

    本文讲解一些其它的常用层,包括:softmax-loss层,Inner Product层,accuracy层,reshape层和dropout层及它们的参数配置. 1.softmax-loss sof ...

  5. Caffe学习系列(5):其它常用层及参数

    本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss so ...

  6. 转 Caffe学习系列(5):其它常用层及参数

    本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss so ...

  7. 4、Caffe其它常用层及参数

    借鉴自:http://www.cnblogs.com/denny402/p/5072746.html 本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accu ...

  8. caffe(5) 其他常用层及参数

    本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置. 1.softmax-loss so ...

  9. Keras常用层

    Dense层:全连接层 Activatiion层:激活层,对一个层的输出施加激活函数 Dropout层:为输入数据施加Dropout.Dropout将在训练过程中每次更新参数时按一定概率(rate)随 ...

随机推荐

  1. 设置VMware随系统开机自动启动并引导虚拟机操作系统

    设置VMware随系统开机自动启动并引导虚拟机操作系统 转载 2012年03月15日 19:50:53 标签: vmware / 虚拟机 / windows / parameters / tools  ...

  2. sql命令大全

    1.连接Mysql 格式: mysql -h主机地址 -u用户名 -p用户密码 1.连接到本机上的MYSQL.首先打开DOS窗口,然后进入目录mysql\bin,再键入命令mysql -u root ...

  3. List、Set、Map集合大杂烩

    java集合主要分三种:list.set.map:当中list和set都继承自Collection接口,两者最大差别是set不能包括反复元素 list的经常使用实现类有: ArrayList:大小可变 ...

  4. idea,eclipse创建多模块项目

    新建一个maven项目 iead,新建是不选择archetype,新建好之后,pom中的 <packaging>pom</packaging>节点是默认的,如果不是要改成这这样 ...

  5. JVM Specification 9th Edition (4) Chapter 4. The class File Format

    Chapter 4. The class File Format Table of Contents 4.1. The ClassFile Structure 4.2. Names 4.2.1. Bi ...

  6. 快速排序的c++实现 和 python 实现

    最近在学python,其中有个要求实现快速排序的练习,就顺便复习了c++的快速排序实现. 快速排序的基本思想是,通过一轮的排序将序列分割成独立的两部分,其中一部分序列的关键字(这里主要用值来表示)均比 ...

  7. 关于如何防止PHP漏洞?

    踏入编程圈一年不到,之前写的文章一直放在个人博客上,以后我写的或整理的好的教程一定到园子里分享,只是园子里PHPer好像不怎么活跃,希望同行多多交流.这是我之前整理的一篇PHP漏洞文章! 漏洞无非这么 ...

  8. C++ STL标准模板库(list)

    //list的使用 #define _CRT_SECURE_NO_WARNINGS #include<iostream> #include<list> using namesp ...

  9. 【BZOJ】2982: combination(lucas定理+乘法逆元)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2982 少加了特判n<m return 0就wa了QAQ lucas定理:C(n, m)%p=( ...

  10. node中的require和exports

    http://cnodejs.org/topic/4f16442ccae1f4aa270010e9