1014. Waiting in Line (30)

时间限制
400 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

Suppose a bank has N windows open for service. There is a yellow line in front of the windows which devides the waiting area into two parts. The rules for the customers to wait in line are:

  • The space inside the yellow line in front of each window is enough to contain a line with M customers. Hence when all the N lines are full, all the customers after (and including) the (NM+1)st one will have to wait in a line behind the yellow line.
  • Each customer will choose the shortest line to wait in when crossing the yellow line. If there are two or more lines with the same length, the customer will always choose the window with the smallest number.
  • Customer[i] will take T[i] minutes to have his/her transaction processed.
  • The first N customers are assumed to be served at 8:00am.

Now given the processing time of each customer, you are supposed to tell the exact time at which a customer has his/her business done.

For example, suppose that a bank has 2 windows and each window may have 2 custmers waiting inside the yellow line. There are 5 customers waiting with transactions taking 1, 2, 6, 4 and 3 minutes, respectively. At 08:00 in the morning, customer1 is
served at window1 while customer2 is served at window2. Customer3 will wait in front of window1 and
customer4 will wait in front of window2. Customer5 will wait behind the yellow line.

At 08:01, customer1 is done and customer5 enters the line in front of window1 since that line seems shorter now. Customer2 will
leave at 08:02, customer4 at 08:06, customer3 at 08:07, and finally customer5 at 08:10.

Input

Each input file contains one test case. Each case starts with a line containing 4 positive integers: N (<=20, number of windows), M (<=10, the maximum capacity of each line inside the yellow line), K (<=1000, number of customers), and Q (<=1000, number of customer
queries).

The next line contains K positive integers, which are the processing time of the K customers.

The last line contains Q positive integers, which represent the customers who are asking about the time they can have their transactions done. The customers are numbered from 1 to K.

Output

For each of the Q customers, print in one line the time at which his/her transaction is finished, in the format HH:MM where HH is in [08, 17] and MM is in [00, 59]. Note that since the bank is closed everyday after 17:00, for those customers who cannot be served
before 17:00, you must output "Sorry" instead.

Sample Input

2 2 7 5
1 2 6 4 3 534 2
3 4 5 6 7

Sample Output

08:07
08:06
08:10
17:00 Sorry 模拟题:
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>
#include <queue> using namespace std; int t[1005];
int l;
int start[1005];
int e[1005];
int n,m;
int k;
void fun(int time)
{
int hh=time/60;
int mm=time%60;
printf("%02d:%02d\n",8+hh,mm);
}
int main()
{
scanf("%d%d%d%d",&n,&m,&k,&l);
for(int i=1;i<=k;i++)
scanf("%d",&t[i]);
int cnt=1;
memset(e,-1,sizeof(e));
queue<int> q[1005];
for(int j=1;j<=m;j++)
{
for(int i=1;i<=n;i++)
{
if(cnt>k)
continue;
if(j==1)
start[cnt]=0;
q[i].push(cnt++);
}
}
for(int i=0;i<540;i++)
{
int num=1e5;
for(int j=1;j<=n;j++)
{
if(q[j].empty()) continue;
int x=q[j].front();
if(start[x]+t[x]==i)
{
e[x]=i;
q[j].pop();
if(!q[j].empty())
{
int x=q[j].front();
start[x]=i;
}
}
}
if(cnt>k)
continue;
for(int j=1;j<=n;j++)
{
if(q[j].size()<m)
{
if(cnt>k)
continue;
if(q[j].empty())
start[cnt]=i;
q[j].push(cnt++);
}
}
}
for(int i=1;i<=n;i++)
{
if(!q[i].empty())
{
int x=q[i].front();
if(start[x]<540)
e[x]=start[x]+t[x];
}
}
int pos;
for(int i=1;i<=l;i++)
{
scanf("%d",&pos);
if(e[pos]==-1)
printf("Sorry\n");
else
fun(e[pos]);
}
return 0; }

PAT 1014 Waiting in Line (模拟)的更多相关文章

  1. PAT 1014 Waiting in Line (模拟)

    Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...

  2. PAT 1014. Waiting in Line

    Suppose a bank has N windows open for service.  There is a yellow line in front of the windows which ...

  3. 1014. Waiting in Line (模拟)

    n个窗口就有n个队列,模拟这n个队列就可以了.需要注意的是,一个人在选择排队窗口的时候,他会选择排队人数最少的窗口,如果存在多个窗口排队的人数相同,那么他会选择编码最小的窗口. Note that s ...

  4. PAT 1014 Waiting in Line (30分) 一个简单的思路

    这题写了有一点时间,最开始想着优化一下时间,用优先队列去做,但是发现有锅,因为忽略了队的长度. 然后思考过后,觉得用时间线来模拟最好做,先把窗口前的队列填满,这样保证了队列的长度是统一的,这样的话如果 ...

  5. PAT 甲级 1014 Waiting in Line (30 分)(queue的使用,模拟题,有个大坑)

    1014 Waiting in Line (30 分)   Suppose a bank has N windows open for service. There is a yellow line ...

  6. PAT甲级1014. Waiting in Line

    PAT甲级1014. Waiting in Line 题意: 假设银行有N个窗口可以开放服务.窗前有一条黄线,将等候区分为两部分.客户要排队的规则是: 每个窗口前面的黄线内的空间足以包含与M个客户的一 ...

  7. 1014 Waiting in Line (30分)

    1014 Waiting in Line (30分)   Suppose a bank has N windows open for service. There is a yellow line i ...

  8. PAT A 1014. Waiting in Line (30)【队列模拟】

    题目:https://www.patest.cn/contests/pat-a-practise/1014 思路: 直接模拟类的题. 线内的各个窗口各为一个队,线外的为一个,按时间模拟出队.入队. 注 ...

  9. PTA (Advanced Level) 1014 Waiting in Line

    Waiting in Line Suppose a bank has N windows open for service. There is a yellow line in front of th ...

随机推荐

  1. html5-本地数据库的操作

    <script src="jquery-1.8.3.js"></script><script>/* IE11不支持此操作创建数据库 解释一下op ...

  2. 查询MySql数据库架构信息:数据库,表,表字段

    /*1.查询所有数据库*/ show databases;  /*2.查询所有数据表*/ select * from information_schema.tables where table_sch ...

  3. Unix删除当前目录可执行文件

    On GNU versions of find you can use -executable: find . -type f -executable -printFor BSD versions o ...

  4. 自定义textView的placeholder和边框

    想实现的效果: // //  LHQsuggestionViewCtrl.m //  A13 - 设置 // //  Created by vic fan on 16/6/23. //  Copyri ...

  5. Powershell对象选择,排序和变量存储

    PowerShell基础教程(17)——对象的选择.排序和变量存储 可以使用 Select-Object cmdlet 来创建新的.自定义的 Windows PowerShell 对象,后者包含的属性 ...

  6. shell变量/环境变量和set/env/export用法_转

    转自:shell环境变量以及set,env,export的区别 一.shell环境变量的分类以及set env export的区别: set:显示(设置)shell变量,包括的私有变量以及用户变量.不 ...

  7. 两款 REST 测试工具

    用CURL命令行测试REST API 无疑是低效率的,这里把最近使用的两款 Chrome 插件总结下 POSTMAN 简单易用 REST Console 功能强大 使用的话用POSTMAN就够用了,但 ...

  8. hdu6006 Engineer Assignment 状态dp 定义dp[i][s]表示前i个工程状态为s可以执行的最大工程数。s表示前i个工人选走了s状态的工程师。

    /** 题目:hdu6006 Engineer Assignment 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6006 题意:已知n个工程,每个需要某 ...

  9. ios-A+B经典问题

    // // main.m // a+b // #import <Foundation/Foundation.h> #import "Calcultor.h" int m ...

  10. 大数据(7) - zookeeper的安装与使用

    简介 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件.它是一个为分布式应用提供一致性服务的软件,提 ...