BZOJ 1927 星际竞速(费用流)
考虑费用流,题目要求走n个点都走完且恰好一次,显然流量的限制为n。
建立源点s和汇点t,并把每个星球拆成两个点i和i',分别表示已到达该点和经过该点。
对于能力爆发,建边(s,i',1,w). 对应高速航行,建边(s,i,1,0), (i,j',1,w).
因为每个点必须走一次且只能走一次。建边(i',t,1,0).
其实就是类似最小路径覆盖的建图方法。
# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi 3.1415926535
# define eps 1e-
# define MOD
# define INF
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<,l,mid
# define rch p<<|,mid+,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
int res=, flag=;
char ch;
if((ch=getchar())=='-') flag=;
else if(ch>=''&&ch<='') res=ch-'';
while((ch=getchar())>=''&&ch<='') res=res*+(ch-'');
return flag?-res:res;
}
void Out(int a) {
if(a<) {putchar('-'); a=-a;}
if(a>=) Out(a/);
putchar(a%+'');
}
const int N=;
//Code begin... struct Edge{
int to, next, cap, flow, cost;
Edge(int _to=, int _next=, int _cap=, int _flow=, int _cost=):
to(_to), next(_next), cap(_cap), flow(_flow), cost(_cost){}
}edge[];
struct ZKW_MinCostMaxFlow{
int head[N], tot, cur[N], dis[N], ss, tt, n, min_cost, max_flow;
bool vis[N];
void init(){tot=; mem(head,-);}
void addedge(int u, int v, int cap, int cost){
edge[tot]=Edge(v,head[u],cap,,cost);
head[u]=tot++;
edge[tot]=Edge(u,head[v],,,-cost);
head[v]=tot++;
}
int aug(int u, int flow){
if (u==tt) return flow;
vis[u]=true;
for (int i=cur[u]; i!=-; i=edge[i].next) {
int v=edge[i].to;
if (edge[i].cap>edge[i].flow&&!vis[v]&&dis[u]==dis[v]+edge[i].cost) {
int tmp=aug(v,min(flow,edge[i].cap-edge[i].flow));
edge[i].flow+=tmp; edge[i^].flow-=tmp; cur[u]=i;
if (tmp) return tmp;
}
}
return ;
}
bool modify_label(){
int d=INF;
FO(u,,n) if (vis[u]) for (int i=head[u]; i!=-; i=edge[i].next) {
int v=edge[i].to;
if (edge[i].cap>edge[i].flow&&!vis[v]) d=min(d,dis[v]+edge[i].cost-dis[u]);
}
if (d==INF) return false;
FO(i,,n) if (vis[i]) vis[i]=false, dis[i]+=d;
return true;
}
PII mincostmaxflow(int start, int end, int nn){
ss=start, tt=end, n=nn; min_cost=max_flow=;
FO(i,,n) dis[i]=;
while () {
FO(i,,n) cur[i]=head[i];
while () {
FO(i,,n) vis[i]=false;
int tmp=aug(ss,INF);
if (tmp==) break;
max_flow+=tmp; min_cost+=tmp*dis[ss];
}
if (!modify_label()) break;
}
return mp(min_cost,max_flow);
}
}solve;
int main ()
{
int n, m, s, t, x, u, v;
scanf("%d%d",&n,&m);
s=; t=*n+;
solve.init();
FOR(i,,n) scanf("%d",&x), solve.addedge(s,i,,), solve.addedge(s,n+i,,x), solve.addedge(n+i,t,,);
FOR(i,,m) {
scanf("%d%d%d",&u,&v,&x);
if (u>v) swap(u,v);
solve.addedge(u,n+v,,x);
}
printf("%d\n",solve.mincostmaxflow(s,t,t+).first);
return ;
}
BZOJ 1927 星际竞速(费用流)的更多相关文章
- BZOJ 1927: [Sdoi2010]星际竞速 费用流
1927: [Sdoi2010]星际竞速 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...
- BZOJ 1927: [Sdoi2010]星际竞速(费用流)
传送门 解题思路 仿照最小路径覆盖问题,用费用流解决此题.最小路径覆盖问题是拆点连边后用\(n-\)最大匹配,这里的话也是将每个点拆点,源点向入点连流量为\(1\),费用为\(0\)的边,向出点连流量 ...
- Luogu2469 SDOI2010 星际竞速 费用流
传送门 发现它的本质是求一个费用最小的路径覆盖 最小路径覆盖是网络流23题中的一个比较典型的模型 所以考虑相似的建边 因为每一个点要恰好经过一次,是一个有上下界的网络流,故拆点,星球\(i\)拆成\( ...
- BZOJ 1927 星际竞速(最小费用最大流)
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=1927 题意:一个图,n个点.对于给出的每条边 u,v,w,表示u和v中编号小的那个到编号 ...
- bzoj 1927 星际竞速 —— 最小费用最大流
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1927 首先注意到这是个DAG: 考虑每个点从哪里来,可以是瞬移来的,也可以是从某个点走过来的 ...
- BZOJ 1927 星际竞速
http://www.lydsy.com/JudgeOnline/problem.php?id=1927 思路:把一个点拆成两个点, S->i 费用0,流量1 (代表这个点可以移动到其他点所必备 ...
- [SDOI2010]星际竞速——费用流
类似于最短路的网络流,而且还要保证每个点经过一次,拆点就比较方便了. 连边怎么连?要保证最大流是n(每个点经过一次)还要能从直接跳转 将每个点拆点.源点向每个点的入点连一条容量为1费用为0的边.源点向 ...
- [bzoj 1449] 球队收益(费用流)
[bzoj 1449] 球队收益(费用流) Description Input Output 一个整数表示联盟里所有球队收益之和的最小值. Sample Input 3 3 1 0 2 1 1 1 1 ...
- BZOJ.2597.[WC2007]剪刀石头布(费用流zkw)
BZOJ 洛谷 \(Description\) 给定一张部分边方向已确定的竞赛图.你需要给剩下的边确定方向,使得图中的三元环数量最多. \(n\leq100\). \(Solution\) 这种选择之 ...
随机推荐
- CakePHP Model中( 获取Session)使用Component的方法
有时候我们需要在Model中使用Session,大家知道CakePHP把操作Session的方法封装为了一个Component, 在Model中正常读取Session的方法: 在 "app_ ...
- crash:EXC_ARM_DA_ALIGN(关于内存对齐,memcpy)
crash:EXC_ARM_DA_ALIGN(关于内存对齐,memcpy) 问题描述 在iOS game开发时做内存拷贝时出现了 crash:EXC_ARM_DA_ALIGN,debug版本不会出现, ...
- typescript语法
先来讲一讲TypeScript出现的背景 前端javascript的编程思想与后端java面向对象的编程思想有很大的不同,微软公司借鉴了coffeescript语言,继承了很多C#和java的编程思想 ...
- thinkphp5
分页: thinkphp5分页默认只带page参数 在使用form表单method='get'传递关键字来筛选: 保证每次刷新依旧带上筛选参数 但遇到分页时,下面的分页默认自带page,没有之前筛选的 ...
- 「日常训练」Case of Matryoshkas(Codeforces Round #310 Div. 2 C)
题意与分析(CodeForces 556C) 为了将所有\(n\)个娃娃编号递增地串在一起(原先是若干个串,每个串是递增的), 我们有两种操作: 拆出当前串中最大编号的娃娃(且一定是最右边的娃娃). ...
- hdu1789 Doing Homework again(贪心+排序)
Doing Homework again Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- ADB连接不上手机,端口5037被占用的情况解决
最近在搞手机APP自动化测试,adb连接手机时提示端口被占用 检测5037端口被谁占用,cmd窗口输入命令:netstat -ano | findstr "5037" (注意”50 ...
- Windows如何设置动态和静态ip地址
打开控制面板,一般在电脑的菜单栏能找到,win8和win10可以使用快捷键(win键+X键),找不到的朋友可以搜索一下. 进入到网络和共享中心,点击更改适配器设置. 这里显示的是电脑所以的网络 ...
- jQuery 对象 与 原生 DOM 对象 相互转换
区别 jQuery 选择器得到的 jQuery对象 和 原生JS 中的document.getElementById() document.querySelector取得的 DOM对象 是两种不同类型 ...
- Git 简易食用指南 v2.0
写在前面 一开始我们先聊一聊版本控制,什么是版本控制呢?版本控制是一种记录一个或若干文件内容变化,以便将来查阅特定版本修订情况的系统.具体大类分为: 本地版本控制系统 集中式版本控制系统SVN 分布式 ...