【bzoj1738】[Usaco2005 mar]Ombrophobic Bovines 发抖的牛 Floyd+二分+网络流最大流
题目描述
FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter. The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction. Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse. Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.
输入
* Line 1: Two space-separated integers: F and P
* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i. * Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.
输出
* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".
样例输入
3 4
7 2
0 4
2 6
1 2 40
3 2 70
2 3 90
1 3 120
样例输出
110
题解
floyd+二分+拆点+网络流
先用floyd求出任意两点之间的距离。
然后二分答案,若i与j之间的距离小于等于mid,则将i与j'(拆出来的点)间连一条容量为正无穷的边。
将源点与每个点间连一条容量为牛数的边,将每个拆出来的点与汇点间连一条容量为牛棚容量的边。
然后跑网络流,判断是否满流即可。
注意图可以是不连通的,所以当ans过大时,说明必须要用到题目中不存在的边,即无论如何都不能满足题意,输出-1。
注意距离要开long long。
#include <cstdio>
#include <cstring>
#include <queue>
#define inf 0x3fffffff
using namespace std;
queue<int> q;
long long dis[201][201];
int a[201] , b[201] , head[403] , to[180000] , val[180000] , next[180000] , cnt , s , t , deep[403];
void add(int x , int y , long long z)
{
to[++cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt;
}
bool bfs()
{
int x , i;
while(!q.empty())
q.pop();
memset(deep , 0 , sizeof(deep));
deep[s] = 1;
q.push(s);
while(!q.empty())
{
x = q.front();
q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !deep[to[i]])
{
deep[to[i]] = deep[x] + 1;
if(to[i] == t)
return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t)
return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && deep[to[i]] == deep[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) deep[to[i]] = 0;
val[i] -= k;
val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
bool judge(int n , long long mid , int sum)
{
memset(head , 0 , sizeof(head));
memset(to , 0 , sizeof(to));
memset(val , 0 , sizeof(val));
memset(next , 0 , sizeof(next));
cnt = 1;
int i , j , maxflow = 0;
for(i = 1 ; i <= n ; i ++ )
{
add(s , i , a[i]);
add(i , s , 0);
add(i + n , t , b[i]);
add(t , i + n , 0);
for(j = 1 ; j <= n ; j ++ )
{
if(i == j || dis[i][j] <= mid)
add(i , j + n , inf) , add(j + n , i , 0);
}
}
while(bfs())
maxflow += dinic(s , inf);
return maxflow == sum;
}
int main()
{
int n , m , i , j , k , x , y , suma = 0 , sumb = 0;
long long z , l = 0 , r = 0 , mid , ans = -1;
scanf("%d%d" , &n , &m);
s = 0 , t = 2 * n + 1;
for(i = 1 ; i <= n ; i ++ )
scanf("%d%d" , &a[i] , &b[i]) , suma += a[i] , sumb += b[i];
memset(dis , 0x3f , sizeof(dis));
for(i = 1 ; i <= m ; i ++ )
scanf("%d%d%lld" , &x , &y , &z) , dis[x][y] = dis[y][x] = min(dis[x][y] , z);
if(suma > sumb)
{
printf("-1\n");
return 0;
}
for(k = 1 ; k <= n ; k ++ )
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
dis[i][j] = min(dis[i][j] , dis[i][k] + dis[k][j]);
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
if(i != j)
r = max(r , dis[i][j]);
while(l <= r)
{
mid = (l + r) >> 1;
if(judge(n , mid , suma))
ans = mid , r = mid - 1;
else
l = mid + 1;
}
printf("%lld\n" , ans < 10000000000000ll ? ans : -1);
return 0;
}
【bzoj1738】[Usaco2005 mar]Ombrophobic Bovines 发抖的牛 Floyd+二分+网络流最大流的更多相关文章
- BZOJ 1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛( floyd + 二分答案 + 最大流 )
一道水题WA了这么多次真是.... 统考终于完 ( 挂 ) 了...可以好好写题了... 先floyd跑出各个点的最短路 , 然后二分答案 m , 再建图. 每个 farm 拆成一个 cow 点和一个 ...
- BZOJ1738 [Usaco2005 mar]Ombrophobic Bovines 发抖的牛
先预处理出来每个点对之间的最短距离 然后二分答案,网络流判断是否可行就好了恩 /************************************************************ ...
- BZOJ 1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛
Description 约翰的牛们非常害怕淋雨,那会使他们瑟瑟发抖.他们打算安装一个下雨报警器,并且安排了一个撤退计划.他们需要计算最少的让所有牛进入雨棚的时间. 牛们在农场的F(1≤F≤200 ...
- BZOJ 1738: [Usaco2005 mar]Ombrophobic Bovines 发抖的牛 网络流 + 二分 + Floyd
Description FJ's cows really hate getting wet so much that the mere thought of getting caught in the ...
- bzoj 1738 [Usaco2005 mar]Ombrophobic Bovines 发抖的牛 最大流+二分
题目要求所有牛都去避雨的最长时间最小. 显然需要二分 二分之后考虑如何判定. 显然每头牛都可以去某个地方 但是前提是最短路径<=mid. 依靠二分出来的东西建图.可以发现这是一个匹配问题 din ...
- 【bzoj1733】[Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 二分+网络流最大流
题目描述 Farmer John is constructing a new milking machine and wishes to keep it secret as long as possi ...
- bzoj 1734: [Usaco2005 feb]Aggressive cows 愤怒的牛【二分+贪心】
二分答案,贪心判定 #include<iostream> #include<cstdio> #include<algorithm> using namespace ...
- Ombrophobic Bovines
poj2391:http://poj.org/problem?id=2391 题意:一个人有n个农场,每个农场都一个避雨的地方,每个农场有一些牛,每个避雨的地方能容纳牛的数量是有限的.农场之间有一些道 ...
- POJ 2391 Ombrophobic Bovines
Ombrophobic Bovines Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 18623 Accepted: 4 ...
随机推荐
- Java:xxx is not an enclosing class
1. 错误原因 该错误一般出现在对内部类进行实例化时,例如 public class A{ public class B{ } } 此时B是A的内部类,如果我们要使用如下语句实例化一个B类的对象: A ...
- Katalon 学习笔记(一)
工具介绍: Katalon Studio是一个能提供一整套功能来实现Web,API和Mobile的全自动测试解决方案的自动化测试平台.Katalon Studio构建于开源Selenium和App ...
- 运用GamePlayKit的GKEntity及GKComponent 的iOS游戏开发实例
GameplayKit是一个面向对象的框架,为构建游戏提供基础工具和技术. GameplayKit包含用于设计具有功能性,可重用架构的游戏的工具,以及用于构建和增强诸如角色移动和对手行为的游戏玩法特征 ...
- java poi技术读取到数据库
https://www.cnblogs.com/hongten/p/java_poi_excel.html java的poi技术读取Excel数据到MySQL 这篇blog是介绍java中的poi技术 ...
- javascript打开新窗口
一.window.open()支持环境: JavaScript1.0+/JScript1.0+/Nav2+/IE3+/Opera3+ 二.基本语法: window.open(pageURL,name, ...
- Java静态方法,静态变量,初始化顺序
1. 静态方法: 成员变量分为实例变量和静态变量.其中实例变量属于某一个具体的实例,必须在类实例化后才真正存在,不同的对象拥有不同的实例变量.而静态变量被该类所有的对象公有(相当于全局变量),不需要实 ...
- [C++] OOP - Virtual Functions and Abstract Base Classes
Ordinarily, if we do not use a function, we do not need to supply a definition of the function. Howe ...
- [C++] in-class initializer
C++11 introduced serveral contructor-related enhancements including: Class member initializers Deleg ...
- Python中的global和nonlocal
在Python中,一个变量的scope范围从小到大分成4部分:Local Scope(也可以看成是当前函数形成的scope),Enclosing Scope(简单来说,就是外层函数形成的scope), ...
- ptrdiff_t类型
一.特性 1. 这是一种标准库类型 2. 是两个指针相减的结果的类型(因为差值可能为负值,所以是一种带符号类型) 3. 和size_t一样,ptrdiff_t也是一种定义在<cstddef> ...