首先由于不会有三条对角线交于一点,所以过某一个交点有且只能有2条对角线

而这两条对角线实质上是确定了4个顶点(也可以看做是一个四边形的两条对角线交于一点,求四边形的数量)。

因此我们只需要确定4个顶点就得到了这个唯一确定的交点。

因此我们只需要求这样4个顶点的搭配有多少个了

也就是从n个顶点中取4个出来。

根据组合数的公式,(如果你不知道组合数的公式可以这么推:第一次取可以n个点都是可以取的,第二次取的时候第一个取的点就不能取了,所以只能取(n-1)种,以此类推)

由于改变四个点的顺序不会改变对角线,因此是求的组合而不是排列,也就要除以4!,也就是24

于是我们就得到了公式: n (n-1) (n-2) * (n-3) / 24

同时为了防止爆掉,但又不想写高精,

我们可以采用一种化简的技巧

于是原式可以化为:

n (n-1) / 2 (n-2) / 3 * (n-3) / 4

那为什么这样一定是对的呢?难道不会因为除不尽却向下取整而导致错误吗?

事实上是一定除得尽的

首先n和n-1一定有一个是2的倍数,因此2可以除尽,

同理n,n-1,n-2中一定有一个是3的倍数,因此3可以除尽(除掉2只会消除因数2而对3没有影响)

同理4也可以除尽

完\(^o^)/~

 #include<bits/stdc++.h>
using namespace std;
unsigned long long n,ans;
int main()
{
scanf("%lld",&n);
ans=n * (n-) / * (n-) / * (n-) / ;
printf("%lld\n",ans);
return ;
}

【luogu2181】对角线的更多相关文章

  1. [打基础]luogu2181对角线——计数原理

    啦啦啦我ysw又回来啦!之后大概会准备打acm,暑假尽量复习复习,因为已经快两年没碰oi了,最多也就高三noip前学弟学妹出题讲题,所以从这一篇blog开始大概会有一系列"打基础" ...

  2. 在主方法中定义一个大小为10*10的二维字符型数组,数组名为y,正反对角线上存的是‘*’,其余 位置存的是‘#’;输出这个数组中的所有元素。

    //在主方法中定义一个大小为10*10的二维字符型数组,数组名为y,正反对角线上存的是‘*’,其余 位置存的是‘#’:输出这个数组中的所有元素. char [][]y=new char [10][10 ...

  3. 疑难杂症rendering(对角线上的线)

    postprocess全屏特效 对角线有条线 明显和buffer有关因为线由小的东西组成 就像之前没清空buffer产生的马赛克 beginscene时 clearmask 设0 ---------- ...

  4. Python练习题 028:求3*3矩阵对角线数字之和

    [Python练习题 028] 求一个3*3矩阵对角线元素之和 ----------------------------------------------------- 这题解倒是解出来了,但总觉得 ...

  5. C++ 出现bug :二位数组的操作运算,求非对角线的元素的和

    编写一个通用程序,求出二位数组(行数和列数必须相等)的非对角线的元素之和,试建立类MATRIX完成上述功能 #include<iostream> using namespace std; ...

  6. Spread 之自定义对角线cellType源码: DiagonalCellType

    最新的SpreadWinform提供了多达24种CellType类型,下面的这2篇博文对新增了GcTextBoxCellType和GcDateTimeCellType单元格格式做了比较详细的说明. & ...

  7. C语言——打印魔方阵(每一行,每一列,对角线之和相等)

    <一>魔方阵说明: 魔方阵是一个N*N的矩阵: 该矩阵每一行,每一列,对角线之和都相等: <二>魔方阵示例: 三阶魔方阵: 8   1   6 3   5   7 4   9 ...

  8. [LeetCode] Diagonal Traverse 对角线遍历

    Given a matrix of M x N elements (M rows, N columns), return all elements of the matrix in diagonal ...

  9. [Swift]LeetCode498. 对角线遍历 | Diagonal Traverse

    Given a matrix of M x N elements (M rows, N columns), return all elements of the matrix in diagonal ...

随机推荐

  1. What is the "internal" interface and port for on Openvswitch?

    转:https://ask.openstack.org/en/question/4276/what-is-the-internal-interface-and-port-for-on-openvswi ...

  2. dva框架之redux相关

    dva封装了redux,减少很多重复代码比如action reducers 常量等,本文简单介绍dva redux操作流程. 利用官网的一个加减操作小实例来操作: dva所有的redux操作是放在mo ...

  3. MySQL日期函数、时间函数总结(MySQL 5.X)

    一.获得当前日期时间函数 1.1 获得当前日期+时间(date + time)函数:now() select now(); # :: 除了 now() 函数能获得当前的日期时间外,MySQL 中还有下 ...

  4. Objective-C NSString基本使用 类方法 self关键字

    NSString基本使用 #import <Foundation/Foundation.h> int main() { //最简单的创建字符串的方式 NSString *str = @&q ...

  5. Siki_Unity_1-6_C#编程初级教程(未学)

    Unity 1-6 C#编程初级教程 任务1:C#和.Net框架 C#是.Net里的一个成分 2002年微软发布第一个.Net框架(多平台,行业标准,安全性) .Net框架 IDE编程工具 --产生- ...

  6. 关于@media不生效的问题和meta总结

    1:之前做的是两套页面.现在改成响应式布局.发现加上 @media only screen and (max-width: 500px) {    .gridmenu {        width:1 ...

  7. 浅谈JS-cookie,你是香甜可口的小点心吗?

    引言: 想必大家一定听过或看过浏览器cookie,早在nokia雄霸天下.我们还不太明白浏览器的时候,cookie就已经悄悄地存在于浏览器的“设置选项”中了.当时它的用途仅仅是让你选择是否“清除”.年 ...

  8. 使用手机登录OWA修改密码的问题

    最近发现使用手机端登录OWA,安卓手机是可以修改密码的,如图1,但是iPhone就不成,safari和第三方都不可以,如图二. 图一 图二

  9. opencv-学习笔记(1)常用函数和方法。

    opencv-学习笔记(1)常用函数和方法. cv2.imread(filename,falg) filename是文件名字 flag是读入的方式 cv2.MREAD_UNCHANGED :不进行转化 ...

  10. StreamSets小白踩过的一些坑

    由于公司业务上的需求,需要实时监控mysql数据库的数据的增长,并将数据同步到另一个平台,所以就问老大使用什么工具比较好,老大推荐使用StreamSets,还说在测试环境都已经部署好了StreamSe ...