首先由于不会有三条对角线交于一点,所以过某一个交点有且只能有2条对角线

而这两条对角线实质上是确定了4个顶点(也可以看做是一个四边形的两条对角线交于一点,求四边形的数量)。

因此我们只需要确定4个顶点就得到了这个唯一确定的交点。

因此我们只需要求这样4个顶点的搭配有多少个了

也就是从n个顶点中取4个出来。

根据组合数的公式,(如果你不知道组合数的公式可以这么推:第一次取可以n个点都是可以取的,第二次取的时候第一个取的点就不能取了,所以只能取(n-1)种,以此类推)

由于改变四个点的顺序不会改变对角线,因此是求的组合而不是排列,也就要除以4!,也就是24

于是我们就得到了公式: n (n-1) (n-2) * (n-3) / 24

同时为了防止爆掉,但又不想写高精,

我们可以采用一种化简的技巧

于是原式可以化为:

n (n-1) / 2 (n-2) / 3 * (n-3) / 4

那为什么这样一定是对的呢?难道不会因为除不尽却向下取整而导致错误吗?

事实上是一定除得尽的

首先n和n-1一定有一个是2的倍数,因此2可以除尽,

同理n,n-1,n-2中一定有一个是3的倍数,因此3可以除尽(除掉2只会消除因数2而对3没有影响)

同理4也可以除尽

完\(^o^)/~

 #include<bits/stdc++.h>
using namespace std;
unsigned long long n,ans;
int main()
{
scanf("%lld",&n);
ans=n * (n-) / * (n-) / * (n-) / ;
printf("%lld\n",ans);
return ;
}

【luogu2181】对角线的更多相关文章

  1. [打基础]luogu2181对角线——计数原理

    啦啦啦我ysw又回来啦!之后大概会准备打acm,暑假尽量复习复习,因为已经快两年没碰oi了,最多也就高三noip前学弟学妹出题讲题,所以从这一篇blog开始大概会有一系列"打基础" ...

  2. 在主方法中定义一个大小为10*10的二维字符型数组,数组名为y,正反对角线上存的是‘*’,其余 位置存的是‘#’;输出这个数组中的所有元素。

    //在主方法中定义一个大小为10*10的二维字符型数组,数组名为y,正反对角线上存的是‘*’,其余 位置存的是‘#’:输出这个数组中的所有元素. char [][]y=new char [10][10 ...

  3. 疑难杂症rendering(对角线上的线)

    postprocess全屏特效 对角线有条线 明显和buffer有关因为线由小的东西组成 就像之前没清空buffer产生的马赛克 beginscene时 clearmask 设0 ---------- ...

  4. Python练习题 028:求3*3矩阵对角线数字之和

    [Python练习题 028] 求一个3*3矩阵对角线元素之和 ----------------------------------------------------- 这题解倒是解出来了,但总觉得 ...

  5. C++ 出现bug :二位数组的操作运算,求非对角线的元素的和

    编写一个通用程序,求出二位数组(行数和列数必须相等)的非对角线的元素之和,试建立类MATRIX完成上述功能 #include<iostream> using namespace std; ...

  6. Spread 之自定义对角线cellType源码: DiagonalCellType

    最新的SpreadWinform提供了多达24种CellType类型,下面的这2篇博文对新增了GcTextBoxCellType和GcDateTimeCellType单元格格式做了比较详细的说明. & ...

  7. C语言——打印魔方阵(每一行,每一列,对角线之和相等)

    <一>魔方阵说明: 魔方阵是一个N*N的矩阵: 该矩阵每一行,每一列,对角线之和都相等: <二>魔方阵示例: 三阶魔方阵: 8   1   6 3   5   7 4   9 ...

  8. [LeetCode] Diagonal Traverse 对角线遍历

    Given a matrix of M x N elements (M rows, N columns), return all elements of the matrix in diagonal ...

  9. [Swift]LeetCode498. 对角线遍历 | Diagonal Traverse

    Given a matrix of M x N elements (M rows, N columns), return all elements of the matrix in diagonal ...

随机推荐

  1. Error starting mongod. /var/run/mongodb/mongod.pid exists.启动mongodb报错

    linux上安装mongodb,启动时报上面的错,解决如下: 解决方法: 1.删除mongod.pid文件 rm -rf /var/run/mongodb/mongod.pid 2.修改/tmp/mo ...

  2. Emmet 技巧

    1. Lorem 产生一段 dummy text 2. $ 变量的使用 3. 插入img的长度和宽度 使用快捷键ctrl+u插入图片的长度和宽度 注意光标要停留在图片文件名上. 其他在Sublime中 ...

  3. (转)Gmail,你必须了解的12个邮件编码问题

    转载地址:http://www.maildesign.cn/archives/1537 1.Gmail 不支持style=” display:none”2.Gmail不支持内嵌式CSS样式3.Gmai ...

  4. iOS - Foundation相关

    1.NSString         A.创建的方式:            stringWithFormat:格式化字符串  ,创建字符串对象在堆区域            @"jack& ...

  5. Appium Inspector定位元素与录制简单脚本

    本次以微信为例, 使用Appium自带的Inspector定位工具定位元素, 以及进行最最最简单脚本的录制: capabilities = { "platformName": &q ...

  6. jmeter3.0 java请求

    1.java请求说明 需要压测某些java方法或一些请求需要通过编写代码实现 1.1.依赖jar包: jmeter下/lib/ext中的ApacheJMeter_java.jar(必须).Apache ...

  7. [Clr via C#读书笔记]Cp11事件

    Cp11事件 类型之所以提供事件通知功能,是因为类型维护了一个已登记方法的列表,事件发生后,类型将通知列表登记的所有方法: 事件模型建立在委托的基础上.委托是调用回调方法的一种类型安全的方式. 设计事 ...

  8. mac os x下应用endnote异常解决办法

    最近在用Office+Endnote写论文,使用拼音输入法换字时会出现重字和拼音的情况,比如我想打“桥连”,最终出现的是"qiao'lian桥lian桥连”.后来发现这个问题时由endnot ...

  9. day-14 回归中的相关系数和决定系数概念及Python实现

    衡量一个回归模型常用的两个参数:皮尔逊相关系数和R平方 一.皮尔逊相关系数 在统计学中,皮尔逊相关系数( Pearson correlation coefficient),又称皮尔逊积矩相关系数(Pe ...

  10. javaScript中两个等于号和三个等于号之间的区别

    一言以蔽之:==先转换类型再比较,===先判断类型,如果不是同一类型直接为false. ===表示恒等于,比较的两边要绝对的相同 alert(0 == ""); // trueal ...