BZOJ2337:[HNOI2011]XOR和路径——题解
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
——————————————————————————————————————————
http://www.lydsy.com/JudgeOnline/problem.php?id=2337
2 3 6
不会期望怎么办?看题解……
参考:http://blog.csdn.net/PoPoQQQ/article/details/42223843
我们考虑将xor的操作分解成对每一位的操作,然后将边权拆成当前位,模拟xor操作即可。
剩下来的操作就和我的上一篇博客(BZOJ3143)基本上相同了。
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
typedef double dl;
const int N=;
const int M=;
struct node{
int to,nxt,w;
}e[M*];
int head[N],cnt,d[N];
inline void add(int u,int v,int w){
cnt++;
e[cnt].to=v;
e[cnt].w=w;
e[cnt].nxt=head[u];
head[u]=cnt;
d[u]++;
return;
}
dl c[N][N],f[N][N],x[N],ans;
inline void Gauss(int n,int m){
for(int i=;i<=n;i++){
int l=i;
for(int j=l+;j<=n;j++)
if(fabs(f[l][i])<fabs(f[j][i]))l=j;
if(l!=i)
for(int j=i;j<=m;j++)
swap(f[l][j],f[i][j]);
for(int j=i+;j<=n;j++){
dl temp=f[j][i]/f[i][i];
for(int k=i;k<=m;k++)
f[j][k]=f[j][k]-f[i][k]*temp;
}
}
for(int i=n;i>=;i--){
dl t=f[i][m];
for(int j=n;j>i;j--)
t-=x[j]*f[i][j];
x[i]=t/f[i][i];
}
return ;
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
if(u!=v)add(v,u,w);
}
for(int i=;i<=;i++){
memset(f,,sizeof(f));
memset(x,,sizeof(x));
for(int u=;u<n;u++){
for(int k=head[u];k;k=e[k].nxt){
int v=e[k].to,w=e[k].w;
if(w&(<<i))f[u][v]+=,f[u][n+]+=;
else f[u][v]-=;
}
f[u][u]+=d[u];
}
for(int j=;j<=n+;j++)f[n][j]=;
f[n][n]=;
Gauss(n,n+);
ans+=x[]*(<<i);
}
printf("%.3f\n",ans);
return ;
}
BZOJ2337:[HNOI2011]XOR和路径——题解的更多相关文章
- BZOJ2337: [HNOI2011]XOR和路径
题解: 异或操作是每一位独立的,所以我们可以考虑每一位分开做. 假设当前正在处理第k位 那令f[i]表示从i到n 为1的概率.因为不是有向无环图(绿豆蛙的归宿),所以我们要用到高斯消元. 若有边i-& ...
- BZOJ2337:[HNOI2011]XOR和路径(高斯消元)
Description 给定一个无向连通图,其节点编号为 1 到 N,其边的权值为非负整数.试求出一条从 1 号节点到 N 号节点的路径,使得该路径上经过的边的权值的“XOR 和”最大.该路径可以重复 ...
- [BZOJ2337][HNOI2011]XOR和路径(概率+高斯消元)
直接不容易算,考虑拆成位处理. 设f[i]表示i到n的期望路径异或和(仅考虑某一位),则$f[y]=\sum\limits_{exist\ x1\to y=0}\frac{f[x1]}{d[x1]}+ ...
- BZOJ2337 [HNOI2011]XOR和路径 【概率dp + 高斯消元】
题目 题解 突然get到这样路径期望的题目八成是高斯消元 因为路径上的dp往往具有后效性,这就形成了一个方程组 对于本题来说,直接对权值dp很难找到突破口 但是由于异或是位独立的,我们考虑求出每一位的 ...
- BZOJ2337: [HNOI2011]XOR和路径(期望 高斯消元)
题意 题目链接 Sol 期望的线性性对xor运算是不成立的,但是我们可以每位分开算 设\(f[i]\)表示从\(i\)到\(n\)边权为1的概率,统计答案的时候乘一下权值 转移方程为 \[f[i] = ...
- BZOJ2337: [HNOI2011]XOR和路径(高斯消元,期望)
解题思路: Xor的期望???怕你不是在逗我. 按为期望,新技能get 剩下的就是游走了. 代码: #include<cmath> #include<cstdio> #incl ...
- bzoj千题计划191:bzoj2337: [HNOI2011]XOR和路径
http://www.lydsy.com/JudgeOnline/problem.php?id=2337 概率不能异或 但根据期望的线性,可以计算出每一位为1的概率,再累积他们的期望 枚举每一位i,现 ...
- BZOJ2337: [HNOI2011]XOR和路径 期望概率dp 高斯
这个题让我认识到我以往对于图上期望概率的认识是不完整的,我之前只知道正着退还硬生生的AC做过的所有图,那么现在让我来说一下逆退,一般来说对于概率性的东西都只是正推,因为有了他爸爸才有了他,而对于期望性 ...
- [HNOI2011]XOR和路径 题解
设 \(f(x)\) 表示从 \(x\) 节点走到 \(n\) 的期望.有 $$f(x)=\sum_{{x,y}}\frac{f(y)\oplus w(x,y)}{{\rm deg}(x)}$$ 由于 ...
随机推荐
- editText设置最大长度
xml中可以设置为: <EditText android:layout_width = "fill_parent" android:layout_height = " ...
- Qt PC 安卓 tcp传输文件
废话不多说,如题,上代码 qt PC端 头文件 //网络部分 #include <QTcpSocket> #include <QFile> #include <QFile ...
- SpringMVC+mybatis+maven+Ehcache缓存实现
所谓缓存,就是将程序或系统经常要调用的对象存在内存中,以便其使用时可以快速调用,不必再去创建新的重复的实例.这样做可以减少系统开销,提高系统效率. 缓存主要可分为二大类: 一.通过文件缓存,顾名思义文 ...
- Python汉诺塔问题递归算法与程序
汉诺塔问题: 问题来源:汉诺塔来源于印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从上往下从小到大顺序摞着64片黄金圆盘.上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱 ...
- fastCMS八大核心对象
fastCMS内置system对象,该对象包含八大核心对象,应用于不同的操作场景,分别是: 1.system.string 对象(处理字符类操作) 2.system.number 对象(处理数字类操作 ...
- python程序设计——文件操作
分类 1.文本文件 存储常规字符串,由若干文本行组成,每行以换行符'\n'结尾 2.二进制文件 把对象以字节串存储,常见的图形图像.可执行文件.数据库文件office文档等 #创建文件 >> ...
- 凸包算法(Graham扫描法)详解
先说下基础知识,不然不好理解后面的东西 两向量的X乘p1(x1,y1),p2(x2,y2) p1Xp2如果小于零则说明 p1在p2的逆时针方向 如果大于零则说明 p1在p2的顺时针方向 struct ...
- 莱布尼兹三角形(C++)
[问题描述] 如下图所示的三角形,请编程输出图中排在第 n 行从左边数第 m 个位置上的数. [代码展示] # include<iostream># include<cstdio&g ...
- Python3 Tkinter-Radionbutton
1.创建单选按钮 from tkinter import * root=Tk() Radiobutton(root,text='b1').pack() Radiobutton(root,text='b ...
- java面试整理
IO和NIO的区别 这是一个很常见的问题,如果单纯的只回答IO和NIO的区别,只能算及格.我个人觉得应该从以下几个方面回答: 1).IO简介, 2).TCP的三次握手,因为这也是两者的区别之一, 3) ...
