将每个位置上的数都-1,则显然相当于前缀和始终非负。

  然后就是完全想不到的了。考虑往里面加一张-1的牌。假设在一个合法排列的最后添上一个-1,那么在该排列的所有循环同构排列中,满足前m个前缀和都非负的排列只有原合法排列,因为如果更换开头的话显然有sm+1-shead-1<=sm+1<0。并且对于每一种循环同构排列,都存在一个满足前m个前缀和都非负的排列,因为只要取最小前缀和的后一个为开头即可,证明类似。这样的排列去掉最后一个数就对应了一个合法排列,而显然这样的排列个数就是循环同构排列的种类数,也即m!。同时每一张-1牌都可能位于末尾,而不管是哪张,对应的合法排列可以看成相同的,所以再除以(m+1-n)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 42
#define P 998244353
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,a[N],ans=;
int inv(int a)
{
int s=;
for (int k=P-;k;k>>=,a=1ll*a*a%P) if (k&) s=1ll*s*a%P;
return s;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4735.in","r",stdin);
freopen("bzoj4735.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read();
for (int i=;i<=n;i++) m+=(a[i]=read())--;
for (int i=;i<=m;i++) ans=1ll*ans*i%P;
cout<<1ll*ans*inv(m+-n)%P;
return ;
}

BZOJ4735 你的生命已如风中残烛(组合数学)的更多相关文章

  1. BZOJ4735:你的生命已如风中残烛(组合数学)

    Description 众所周知,萌萌哒六花不擅长数学,所以勇太给了她一些数学问题做练习.但是今天六花酱不想做数学题,于是他们开始打牌. 现在他们手上有m张不同的牌,牌有两种:普通牌和功能牌.功能牌一 ...

  2. BZOJ4735 你的生命已如风中残烛 【数学】

    题目链接 BZOJ4735 题解 给定一个序列,有的位置为\(w_i - 1\),有的位置为\(-1\),问有多少种排列,使得任意前缀和非负? 我们末尾加上一个\(-1\),就是要保证除了末尾外的前缀 ...

  3. [LOJ#2329]「清华集训 2017」我的生命已如风中残烛

    [LOJ#2329]「清华集训 2017」我的生命已如风中残烛 试题描述 九条可怜是一个贪玩的女孩子. 这天她在一堵墙钉了 \(n\) 个钉子,第 \(i\) 个钉子的坐标是 \((x_i,y_i)\ ...

  4. 2018.10.30 uoj#273. 【清华集训2016】你的生命已如风中残烛(组合数学)

    传送门 组合数学妙题. 我们把这mmm个数都减去111. 然后出牌的地方就变成了−1-1−1. 然后发现求出每个位置的前缀和之后全部都是非负数. 考虑在最后加入一个−1-1−1构成一个m+1m+1m+ ...

  5. uoj#273. 【清华集训2016】你的生命已如风中残烛(组合数学)

    传送门 一道打表题 我们把那些普通牌的位置看成\(-1\),那么就是要求有多少个排列满足前缀和大于等于\(1\) 考虑在最后放一个\(-1\),那么就是除了\(m+1\)的位置前缀和都要大于等于\(1 ...

  6. 洛谷 P6672 - [清华集训2016] 你的生命已如风中残烛(组合数学)

    洛谷题面传送门 题解里一堆密密麻麻的 Raney 引理--蒟蒻表示看不懂,因此决定写一篇题解提供一个像我这样的蒟蒻能理解的思路,或者说,理解方式. 首先我们考虑什么样的牌堆顺序符合条件.显然,在摸牌任 ...

  7. UOJ273 [清华集训2016] 你的生命已如风中残烛 【数学】

    题目分析: 把$0$卡牌看成$-1$.题目要求前缀和始终大于等于$1$. 最后添加一个$-1$,这样除了最后一位之外大于等于1,最后一位等于0. 构造圆排列.这样的话一个圆排列只有一个满足的情况,然后 ...

  8. 【UOJ】#273. 【清华集训2016】你的生命已如风中残烛

    题目链接:http://uoj.ac/problem/273 $${Ans=\frac{\prod _{i=1}^{m}i}{w-n+1}}$$ #include<iostream> #i ...

  9. uoj#344. 【清华集训2017】我的生命已如风中残烛(计算几何)

    题面 传送门 题解 orzxyx 首先我们发现,一个点如果被到达大于一次,那么这个点肯定在一个环上.所以在不考虑环的情况下每个点只会被到达一次,那么我们就可以直接暴力了 简单来说,我们对每个点\(i\ ...

随机推荐

  1. MyBatis-MBG(MyBatis Generator)

    1.添加jar包 <dependency> <groupId>org.mybatis.generator</groupId> <artifactId>m ...

  2. possible new indexes 出现了

  3. word record 4

    word record 4 pledge p le g vt. 保证,许诺 snowflake falke->n. 小薄片:火花 deputy de piu ti n. 代理人,代表 etch ...

  4. 转:vue生命周期流程图

  5. XX出行项目子系统-统计系统设计(定时器项目设计例子)

    一. 引言 目前开发的XX出行系统,需要开发数据统计功能,鉴于约约出行系统已经在运营,并且有新版本的迭代,方便以后下个版本复用,遂新建一个子系统. 二. 架构设计 三. 具体实现 1.MySql数据库 ...

  6. ubuntu ssh配置

    Secure Shell (SSH) is a cryptographic network protocol for operating network services securely over ...

  7. Machine Learning笔记整理 ------ (四)线性模型

    1. 线性模型 基本形式:给定由d个属性描述的样本 x = (x1; x2; ......; xd),其中,xi是x在第i个属性上的取值,则有: f(x) = w1x1 + w2x2 + ...... ...

  8. SIG蓝牙mesh笔记3_网络结构

    目录 3. Mesh Networking 3.1 Bearers 承载层 3.2 Network Layer 网络层 3.2.3 Address validity 地址有效性 3.2.4 Netwo ...

  9. jquery取radio单选按钮

    // var strMess = '<%=Exchange() %>';//            if (strMess == "兑换成功") {//         ...

  10. [leetcode-667-Beautiful Arrangement II]

    Given two integers n and k, you need to construct a list which contains n different positive integer ...