P1365 WJMZBMR打osu! / Easy
题目背景
原 维护队列 参见P1903
题目描述
某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(
我们来简化一下这个游戏的规则
有 nnn 次点击要做,成功了就是o,失败了就是x,分数是按combo计算的,连续 aaa 个combo就有 a×aa\times aa×a 分,combo就是极大的连续o。
比如ooxxxxooooxxx,分数就是 2×2+4×4=4+16=202 \times 2 + 4 \times 4 = 4 +16=202×2+4×4=4+16=20 。
Sevenkplus闲的慌就看他打了一盘,有些地方跟运气无关要么是o要么是x,有些地方o或者x各有50%的可能性,用?号来表示。
比如oo?xx就是一个可能的输入。 那么WJMZBMR这场osu的期望得分是多少呢?
比如oo?xx的话,?是o的话就是oooxx => 9,是x的话就是ooxxx => 4
期望自然就是 (4+9)/2=6.5(4+9)/2 =6.5(4+9)/2=6.5 了
输入输出格式
输入格式:
第一行一个整数 nnn ,表示点击的个数
接下来一个字符串,每个字符都是o,x,?中的一个
输出格式:
一行一个浮点数表示答案
四舍五入到小数点后 444 位
如果害怕精度跪建议用long double或者extended
输入输出样例
4
????
4.1250
说明
osu很好玩的哦
WJMZBMR技术还行(雾),x基本上很少呢
Solution:
期望题总是贼有意思。
本题期望combo为$o$的期望连续长度的平方,所以我们设$f[i]$表示到了第$i$位的总期望combo,$g[i]$表示到了第$i$位结尾的连续$o$的期望长度,那么分情况讨论:
1、当$s[i]==x$,则$f[i]=f[i-1],g[i]=0$;
2、当$s[i]==o$,则$f[i]=f[i-1]+2*g[i-1]+1,g[i]=g[i-1]+1$($f[i]=f[i-1]+2*g[i-1]+1$是因为$f[i]=(g[i-1]+1)^2=g[i-1]^2+2*g[i-1]+1\;,\;g[i-1]^2=f[i-1]$);
3、当$s[i]==?$,则$f[i]=f[i-1]+g[i-1]+0.5,g[i]=\frac{g[i-1]+1}{2}$;
由于不知道$n$的范围,不好开数组,但是我们发现转移时当前的状态只与上一次的状态有关,于是直接滚掉就好了。
代码:
#include<bits/stdc++.h>
#define il inline
#define ll long long
#define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++)
#define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--)
using namespace std;
int n,cnt;
char s;
double f[],g[]; int main(){
ios::sync_with_stdio();
cin>>n;
For(i,,n){
cin>>s;
if(s=='x') f[cnt^]=f[cnt],g[cnt^]=;
else if(s=='o') f[cnt^]=f[cnt]+*g[cnt]+,g[cnt^]=g[cnt]+;
else f[cnt^]=f[cnt]+g[cnt]+0.5,g[cnt^]=g[cnt]/+0.5;
cnt^=;
}
printf("%.4lf",f[cnt]);
return ;
}
P1365 WJMZBMR打osu! / Easy的更多相关文章
- 洛谷 P1365 WJMZBMR打osu! / Easy
题目背景 原 维护队列 参见P1903 题目描述 某一天\(WJMZBMR\)在打\(osu~~~\)但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有\(n\)次点击要做,成功 ...
- luogu P1365 WJMZBMR打osu! / Easy(期望DP)
题目背景 原 维护队列 参见P1903 题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有nnn次点击要做,成功了就是o,失败了就是 ...
- 洛谷P1365 WJMZBMR打osu! / Easy——期望DP
题目:https://www.luogu.org/problemnew/show/P1365 平方和怎样递推? 其实就是 (x+1)^2 = x^2 + 2*x + 1: 所以我们要关注这里的 x — ...
- Luogu P1365 WJMZBMR打osu! / Easy
概率期望专题首杀-- 毒瘤dp 首先根据数据范围推断出复杂度在O(n)左右 但不管怎么想都是n^2-- 晚上躺在床上吃东西的时候(误)想到之前有几道dp题是通过前缀和优化的 而期望的可加性又似乎为此创 ...
- WJMZBMR打osu! / Easy
WJMZBMR打osu! / Easy 有一个由o,x,?组成的长度为n的序列,?等概率变为o,x,定义序列权值为连续o的长度o的平方之和,询问权值的期望, 解 注意到权值不是简单的累加关系,存在平方 ...
- P1365 WJMZBMR打osu! / Easy-洛谷luogu
传送门 题目背景 原 维护队列 参见P1903 题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有nn次点击要做,成功了就是o,失败 ...
- [Luogu1365] WJMZBMR打osu! / Easy
Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有 \(n\) 次点击要做,成功了就是o,失败了就是x,分数是按com ...
- 洛谷 1365 WJMZBMR打osu! / Easy
题目:https://www.luogu.org/problemnew/show/P1365 大水题.记录一下o的期望长度. 关键是(x+1)^2=x^2+2*x+1. #include<ios ...
- [BZOJ4318] WJMZBMR打osu! / Easy (期望DP)
题目链接 Solution Wa,我是真的被期望折服了,感觉这道题拿来练手正好. DP的难度可做又巧妙... 我们定义: \(f[i]\) 代表到第 \(i\) 次点击的时候的最大答案. \(g[i] ...
随机推荐
- 【NIS】深入了解NIS
1 简介 NIS( NetworkInformation Service)提供了一个网络黄页的功能,当用户登录系统时,Linux系统会到NIS主机上去寻找用户使用的帐号密码信息加以比对,以提供用户登 ...
- 这样的SQL居然能执行
select /*! distinct cities.id from cities join countries on cities.id = countries.id limit 10 */;
- 【CentOS】下安装RabbitMQ教程
系统版本: 安装依赖: 由于RabbitMQ依赖Erlang, 所以需要先安装Erlang. Erlang的安装方式大概有两种: (1) Erlang Solution安装(推荐) wget http ...
- Android Studio|IntelliJ IDEA 常用快捷键(Mac|Window)
一 For Mac(Mac OS X 10.5+) F1 显示注释文档F2 高亮错误或警告快速定位Command + F12 显示当前文件的结构(查看所有方法)Command + F 查找文本Comm ...
- Unity 特殊目录
其他目录 Application.persistentDataPath:webGL平台只能使用这个
- unity实现框选效果
思路: 在uinity中既可以将屏幕坐标转换为世界坐标,也可以将世界坐标转换为屏幕坐标.这样的话我们就可以通过判断物体在世界坐标转换为平幕坐标是否在鼠标框选的矩形区域坐标内,来判断物体是否在框选范围. ...
- LabVIEW初篇---前言
最早接触labview,是研二的时候,2007年,当时为了补贴家用,改善生活.自己拿着本科毕业证去找工作,去一个企业面试,当时,面试的主考官,问了会什么吗,比如PLC.单片机啥的?那时候的自己,基本上 ...
- Nginx与Ribbon的区别
服务器端负载均衡 Nginx Nginx 基于C语言,快速,性能高5w/s. Redis 5w/s,RibbatMQ 1.2w/s ApacheActiveMQ 0.6w/s 业务系统,kafka 2 ...
- Oracle-数据库增删改查基本操作
一.创建数据表 1).创建不存在的新表: create table tname( Data_Name Date_Type [default][默认值] );2).创建已存在表的副本 create ...
- 微信小程序之注释出现的问题(.json不能注释)
js的注释一般是双斜杠// 或者是/**/这样的快注释 .json是配置文件,其内容必须符合json格式内部不允许有注释. JSON有两种数据结构: 名称/值对的集合:key : value样式: 值 ...