Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. 
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real R AB, C AB, R BA and C BA - exchange rates and commissions when exchanging A to B and B to A respectively. 
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=10 3
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10 -2<=rate<=10 2, 0<=commission<=10 2
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 10 4

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES

【题意】

钱的种类为N,M条命令,拥有种类为S这类钱的数目为V,命令为将a换成b,剩下的四个数为a对b的汇率和a换成b的税,b对a的汇率和b换成a的税,公式为(钱数-税)*汇率,问最后钱的数目是否会增多

【分析】

建图,一种货币就是一个点,货币交换作为有向边。边的权值需要小心,A到B的权值为(V(A) - C)*R。看到正权回路,应该想到负权回路,那思考一下是不是能用Bellman-Ford来做呢,其实这个问题刚刚好是相反的,这里需要求最长路,那么把dist初始化为0,dist[s]=v,松弛条件相反,利用Bellman-Ford的思想就能解决这道题了。

#include<cstdio>
#include<string>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<cstring>
#include<set>
#include<queue>
#include<algorithm>
#include<vector>
#include<map>
#include<cctype>
#include<stack>
#include<sstream>
#include<list>
#include<assert.h>
#include<bitset>
#include<numeric>
#define debug() puts("++++")
#define gcd(a,b) __gcd(a,b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a,b,sizeof(a))
#define sz size()
#define be begin()
#define mp make_pair
#define pu push_up
#define pd push_down
#define cl clear()
#define lowbit(x) -x&x
#define all 1,n,1
#define rep(i,x,n) for(int i=(x); i<=(n); i++)
#define in freopen("in.in","r",stdin)
#define out freopen("out.out","w",stdout)
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e18;
const int maxn = 1e5+;
const int maxm = 1e6 + ;
const double PI = acos(-1.0);
const double eps = 1e-;
const int dx[] = {-,,,,,,-,-};
const int dy[] = {,,,-,,-,,-};
int dir[][] = {{,},{,-},{-,},{,}};
const int mon[] = {, , , , , , , , , , , , };
const int monn[] = {, , , , , , , , , , , , };
int tot,n,m,x,s;
int u,w;
double v;
double ab1,ab2,ba1,ba2;
double dis[maxn];
int cnt[maxn],vis[maxn];
struct cmp
{
bool operator()(int a,int b)
{
return dis[a] > dis[b];
}
}; int head[maxn];
struct node
{
int v,nxt;
double r,c,w;
}e[maxn];
void init()
{
tot=;
ms(head,-);
ms(dis,);//求最长路径开始设为0
ms(vis,);
}
void add(int u,int v,double r,double c)
{
e[tot].r=r;
e[tot].c=c;
e[tot].v=v;
e[tot].w=w;
e[tot].nxt=head[u];
head[u]=tot++;
} int spfa(int s)
{
queue<int> q;
dis[s]=v;
vis[s]=;
cnt[s]++;
q.push(s);
while(!q.empty())
{
int u = q.front(); q.pop();
vis[u]=; //
for(int i=head[u];~i;i=e[i].nxt)
{
int v = e[i].v;
//本金 减去利息 再乘汇率;
e[i].w = (dis[u] - e[i].c)*e[i].r-dis[u];
if(dis[v] < dis[u] + e[i].w)
{
dis[v] = dis[u] + e[i].w;
if(!vis[v])//防止出现环,也就是进队列重复了
{
vis[v]=;
q.push(v);
//如果一个点能变大n次以上说明还能继续增大&说明原值已经可以通过转换增大
if(++cnt[v]>n) return -;//有负环
}
}
}
}
return ;
} int main()
{
while(~scanf("%d%d%d%lf",&n,&m,&s,&v))
{
init();
int a,b; for(int i=;i<=m;i++)
{
scanf("%d%d%lf%lf",&a,&b,&ab1,&ab2);
add(a,b,ab1,ab2);//双向链表
scanf("%lf%lf",&ba1,&ba2);
add(b,a,ba1,ba2);
}
if(spfa(s)==-) puts("YES");
else puts("NO");
}
}
/*
【题意】 【类型】
SPFA判断负环变形
【分析】 【时间复杂度&&优化】 【trick】 【数据】
*/

SPFA判环

POJ 1860 Currency Exchange【SPFA判环】的更多相关文章

  1. POJ 1860 Currency Exchange (SPFA松弛)

    题目链接:http://poj.org/problem?id=1860 题意是给你n种货币,下面m种交换的方式,拥有第s种货币V元.问你最后经过任意转换可不可能有升值.下面给你货币u和货币v,r1是u ...

  2. POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环)

    POJ 1860 Currency Exchange / ZOJ 1544 Currency Exchange (最短路径相关,spfa求环) Description Several currency ...

  3. 最短路(Bellman_Ford) POJ 1860 Currency Exchange

    题目传送门 /* 最短路(Bellman_Ford):求负环的思路,但是反过来用,即找正环 详细解释:http://blog.csdn.net/lyy289065406/article/details ...

  4. POJ 1860 Currency Exchange 最短路+负环

    原题链接:http://poj.org/problem?id=1860 Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Tota ...

  5. POJ 1860 Currency Exchange + 2240 Arbitrage + 3259 Wormholes 解题报告

    三道题都是考察最短路算法的判环.其中1860和2240判断正环,3259判断负环. 难度都不大,可以使用Bellman-ford算法,或者SPFA算法.也有用弗洛伊德算法的,笔者还不会SF-_-…… ...

  6. POJ 1860——Currency Exchange——————【最短路、SPFA判正环】

    Currency Exchange Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u S ...

  7. POJ 1860 Currency Exchange (bellman-ford判负环)

    Currency Exchange 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/E Description Several c ...

  8. (简单) POJ 1860 Currency Exchange,SPFA判圈。

    Description Several currency exchange points are working in our city. Let us suppose that each point ...

  9. POJ 1860 Currency Exchange【bellman_ford判断是否有正环——基础入门】

    链接: http://poj.org/problem?id=1860 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22010#probl ...

随机推荐

  1. android极光推送初步了解

    推送可以及时,主动的与用户发起交互 (1)继承jar包,照示例AndroidManifest.xml添加. (2)自定义MyApp继承自Application,在onCreate方法中调用JPushI ...

  2. SpringMVC+MyBatis开发中指定callSettersOnNulls,可解决返回字段不全的问题

    Spring+MyBatis开发过程中,在xxMapper.xml配置文件进行select查询时resultType="map",如果要查询的字段是空值,在返回的map中会出现找不 ...

  3. vijos 1071 01背包+输出路径

    描述 过年的时候,大人们最喜欢的活动,就是打牌了.xiaomengxian不会打牌,只好坐在一边看着. 这天,正当一群人打牌打得起劲的时候,突然有人喊道:“这副牌少了几张!”众人一数,果然是少了.于是 ...

  4. [uva11991]map和vector的入门

    给你一个长度为n的数组,进行m次询问,每次询问输入k和v,输出第k次出现v时的下标是多少. n<=1e6 用vector动态开空间,map使数值结合.map每次查找效率大约为logn. map的 ...

  5. 【洛谷 P2783】 有机化学之神偶尔会做作弊 (双联通分量)

    题目链接 可能是除了<概率论>的最水的黑题了吧 用\(Tarjan\)缩点(点双联通分量),然后就是树上两点之间的距离了,跑\(LCA\)就好了. #include <cstdio& ...

  6. SQL SERVER 常用公式

    SQL SERVER 获取当前月的天数 SELECT -DAY(getdate()+-DAY(getdate())) SQL server 除法计算百分比[整数乘1.0否则结果为0或1] CONVER ...

  7. hasOwnProperty()方法与in操作符

    1.hasOwnProperty() 该方法检测属性存在于实例,还是存在于原型,对于存在于实例中的属性则返回true 2.in 使用该操作符时只要通过对象能够访问到的属性都会返回true

  8. Fiddler--的一些使用技巧

    1.Filters请求与响应的会话过滤 请求会话列表中存在上百个请求,怎么过滤想要的,可以启用 Fiddler  Filters强大的过滤机制,还可以依据正则来过滤,如: REGEX:(?insx). ...

  9. Perl6 Bailador框架(2):路径设置

    use v6; use Bailador; =begin pod get表示是get发送 post表示是post发送 get/post 后面的 '/name' 表示是路径 => sub {} 是 ...

  10. 2017多校第6场 HDU 6105 Gameia 博弈

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6105 题意:Alice和Bob玩一个游戏,喷漆!现在有一棵树上边的节点最开始都没有被染色.游戏规则是: ...