Cow Contest
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 11129   Accepted: 6183

Description

N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.

The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ AN; 1 ≤ BN; AB), then cow A will always beat cow B.

Farmer John is trying to rank the cows by skill level. Given a list the results of M (1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.

Input

* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B

Output

* Line 1: A single integer representing the number of cows whose ranks can be determined
 

Sample Input

5 5
4 3
4 2
3 2
1 2
2 5

Sample Output

2

Source

【分析】给你一些关系,例如输入u,v,表示u排在v的前面,然后问你有哪些人的排名是可以确定的。
 首先可以看出这些关系最终组成了一个有向无环图,也就是说输入u,v,u-->v;我们对于每个人查找确定排在他前面的人的个数和确定排在他后面的人的个数,
如果加起来连同他自己==n,那么说明这个人的排名确定了,那么怎么确定有多少人一定排在他前面呢?我们建两个图,一个顺序,一个逆序,然后分开找就行了。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 10000000
#define mod 10000
typedef long long ll;
using namespace std;
const int N=;
const int M=;
int power(int a,int b,int c){int ans=;while(b){if(b%==){ans=(ans*a)%c;b--;}b/=;a=a*a%c;}return ans;}
int in[N],vis[N];
int n,m,k;
vector<int>vec[N],edg[N];
int dfs1(int x)
{
vis[x]=;
int ans=;
for(int i=;i<vec[x].size();i++){
int v=vec[x][i];
if(!vis[v])ans+=dfs1(v);
}
return ans;
}
int dfs2(int x)
{
int ans=;
vis[x]=;
for(int i=;i<edg[x].size();i++){
int v=edg[x][i];
if(!vis[v])ans+=dfs2(v);
}
return ans;
}
int main()
{
int u,v,ans=;;
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
scanf("%d%d",&u,&v);
vec[u].push_back(v);
edg[v].push_back(u);
}
for(int i=;i<=n;i++){
memset(vis,,sizeof vis);
int ret1=dfs1(i);
memset(vis,,sizeof vis);
int ret2=dfs2(i);
//printf("!!%d %d\n",ret1,ret2);
if(ret1+ret2==n+)ans++;
}
printf("%d\n",ans);
return ;
}

POJ 3660 Cow Contest (dfs)的更多相关文章

  1. POJ 3660 Cow Contest (Floyd)

    http://poj.org/problem?id=3660 题目大意:n头牛两两比赛经过m场比赛后能判断名次的有几头可转 化为路径问题,用Floyd将能够到达的路径标记为1,如果一个点能 够到达剩余 ...

  2. poj 3660 Cow Contest (传递闭包)

    /* floyd 传递闭包 开始Floyd 之后统计每个点能到的或能到这个点的 也就是他能和几个人确定胜负关系 第一批要有n-1个 然后每次减掉上一批的人数 麻烦的很 复杂度上天了.... 正难则反 ...

  3. POJ - 3660 Cow Contest(传递闭包)

    题意: n个点,m条边. 若A 到 B的边存在,则证明 A 的排名一定在 B 前. 最后求所有点中,排名可以确定的点的个数. n <= 100, m <= 4500 刚开始还在想是不是拓扑 ...

  4. POJ 3660 Cow Contest(Floyd求传递闭包(可达矩阵))

    Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 16341   Accepted: 9146 Desc ...

  5. POJ 3660 Cow Contest(传递闭包floyed算法)

    Cow Contest Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5989   Accepted: 3234 Descr ...

  6. poj 3660 Cow Contest(传递闭包 Floyd)

    链接:poj 3660 题意:给定n头牛,以及某些牛之间的强弱关系.按强弱排序.求能确定名次的牛的数量 思路:对于某头牛,若比它强和比它弱的牛的数量为 n-1,则他的名次能够确定 #include&l ...

  7. POJ 3660 Cow Contest (floyd求联通关系)

    Cow Contest 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/H Description N (1 ≤ N ≤ 100) ...

  8. POJ 3660 cow contest (Folyed 求传递闭包)

    N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we ...

  9. POJ 3660 Cow Contest(floyed运用)

    Description N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming con ...

随机推荐

  1. iOS 时间转换

    #pragma mark - 获取当前时间戳 -(NSString *)getTimeSp{ NSDate* dat = [NSDate dateWithTimeIntervalSinceNow:]; ...

  2. 大聊Python----多线程

    Python里的多线程是假的多线程,不管有多少核,同一时间只能在一个核中进行操作!利用Python的多线程,只是利用CPU上下文切换的优势,看上去像是并发,其实只是个单线程,所以说他是假的单线程. 那 ...

  3. 使用BackgroundWorker

    1,WPF应用程序为单线程模型(STAThread),所有UI控件都是主线程创建的,只有主线程能操作UI元素的显示. 2,其他工作线程要维护UI控件的显示,需调用主线程的Dispather,执行Inv ...

  4. mysql 复制表结构 / 从结果中导入数据到新表

    这只会复制结构: mysql> create table a like mysql1; Query OK, 0 rows affected (0.03 sec) mysql> desc a ...

  5. java===java基础学习(14)---封装

    package dog; public class Demo4 { public static void main(String []args) { Worker w1= new Worker(&qu ...

  6. python中的enumerate获取迭代元素的下标

    以前迭代的时候,需要获取次数都是如下格式: index=1 for node in nodes: if index==3: continue print(node.text_content())ind ...

  7. 搭建selenium+python自动化环境

    1.安装python,下载地址:http://python.org---安装版本3.5.1 ps:自带setuptools和pip工具 2.然后,用pip安装开发Web App需要的第三方库:异步框架 ...

  8. C语言比较巧妙的字符串分割程序

    在解析字符串时,能够解析的给出每个字符串的长度.内容.以及每个字符串的第一个字符的地址. short i; ; //切割之后的字符串的个数 ,ItemLen[],Idx[], ThCommandLen ...

  9. leetcode之Ransom Note

    题目描述: 
Given
 an 
arbitrary
 ransom
 note
 string 
and 
another 
string 
containing 
letters from
 a ...

  10. java中的三元运算符

    格式: 关系表达式 ? 表达式1:表达式2 public class OperatorDemo { public static void main(String[] args){ int a = 10 ...