【BZOJ 1998】[Hnoi2010]Fsk物品调度 置换群+并查集
置换群的部分水得一比,据说是经典的置换群理论(然而我并不知道这理论是啥).
重点就在于怎么求pos!!!
容易发现这个东西是这样的:每次寻找pos,先在本环里找,找不到再往下一个环里找,直到找到为止……
一开始我想二分或者是set,但是感觉会T,然后想了很久之后想到用并查集:
就是维护每一个被占用的位置的下一个位置,因为这个位置被占用之后就会转向下一个位置,当然下一个位置有在环内部和在下一个环里两种情况,这两种情况都我都是用并查集维护的,但是一定要注意,不要把这两种情况写成一个并查集,这样路径压缩之后会出事,所以要对于这两种情况分别维护两个并查集.
#include <cstdio>
#include <cstring>
#include <algorithm>
typedef long long LL;
const int N=;
int n,d,c[N],pos[N],f1[N],f2[N];
bool vis[N];
inline int find1(int x){return f1[x]==x?x:f1[x]=find1(f1[x]);}
inline int find2(int x){return f2[x]==x?x:f2[x]=find2(f2[x]);}
inline int get(int x){
int ret=find2(find1(x));
if(find2((ret+d)%n)==ret){
f1[ret]=(ret+)%n;
for(int i=(ret+d)%n;i!=ret;i=(i+d)%n)
f1[i]=(i+)%n;
}else f2[ret]=find2((ret+d)%n);
return ret;
}
int main(){
register int i;
int s,q,p,m,T,j,ans,size;
bool yeah;
scanf("%d",&T);
while(T--){
scanf("%d%d%d%d%d%d",&n,&s,&q,&p,&m,&d);
c[]=,pos[]=s,ans=,d%=n;
for(i=;i<n;++i)c[i]=((LL)c[i-]*q+p)%m;
for(i=;i<n;++i)c[i]%=n,vis[i]=false,f1[i]=f2[i]=i;
get(s);
for(i=;i<n;++i)pos[i]=get(c[i]);
for(i=;i<n;++i){
if(vis[i])continue;
vis[i]=true,yeah=i==,size=;
for(j=pos[i];j!=i;j=pos[j])
vis[j]=true,++size,yeah=(yeah||(j==));
if(size!=)ans+=size+(yeah?-:);
}
printf("%d\n",ans);
}
return ;
}
【BZOJ 1998】[Hnoi2010]Fsk物品调度 置换群+并查集的更多相关文章
- BZOJ 1998: [Hnoi2010]Fsk物品调度 [置换群 并查集]
传送门 流水线上有n个位置,从0到n-1依次编号,一开始0号位置空,其它的位置i上有编号为i的盒子.Lostmonkey要按照以下规则重新排列这些盒子. 规则由5个数描述,q,p,m,d,s,s表示空 ...
- BZOJ_1998_[Hnoi2010]Fsk物品调度_并查集+置换
BZOJ_1998_[Hnoi2010]Fsk物品调度_并查集+置换 Description 现在找工作不容易,Lostmonkey费了好大劲才得到fsk公司基层流水线操作员的职位.流水线上有n个位置 ...
- 【BZOJ 1998】 1998: [Hnoi2010]Fsk物品调度(双向链表+并查集+置换)
1998: [Hnoi2010]Fsk物品调度 Description 现在找工作不容易,Lostmonkey费了好大劲才得到fsk公司基层流水线操作员的职位.流水线上有n个位置,从0到n-1依次编号 ...
- 【BZOJ】1998: [Hnoi2010]Fsk物品调度
http://www.lydsy.com/JudgeOnline/problem.php?id=1998 题意: 给你6个整数$n,s,q,p,m,d$. 有$n$个位置和$n-1$个盒子,位置编号从 ...
- [BZOJ1998][Hnoi2010]Fsk物品调度
[BZOJ1998][Hnoi2010]Fsk物品调度 试题描述 现在找工作不容易,Lostmonkey费了好大劲才得到fsk公司基层流水线操作员的职位.流水线上有n个位置,从0到n-1依次编号,一开 ...
- 【BZOJ1998】[HNOI2010]物品调度(并查集,模拟)
[BZOJ1998][HNOI2010]物品调度(并查集,模拟) 题面 BZOJ,为啥这题都是权限题啊? 洛谷 题解 先不管\(0\)位置是个空,把它也看成一个箱子.那么最终的答案显然和置换循环节的个 ...
- 【BZOJ】【3673】可持久化并查集 & 【3674】可持久化并查集加强版
可持久化并查集 Orz hzwer & zyf 呃学习了一下可持久化并查集的姿势……其实并查集就是一个fa数组(可能还要带一个size或rank数组),那么我们对并查集可持久化其实就是实现一个 ...
- bzoj 2733: [HNOI2012]永无乡【并查集+权值线段树】
bzoj上数组开大会T-- 本来想用set瞎搞的,想了想发现不行 总之就是并查集,每个点开一个动态开点的权值线段树,然后合并的时候把值并在根上,询问的时候找出在根的线段树里找出k小值,看看这个值属于哪 ...
- 【BZOJ】1015: [JSOI2008]星球大战starwar(并查集)
http://www.lydsy.com/JudgeOnline/problem.php?id=1015 看了题解的囧T_T,一开始以为是求割点,但是想到割点不能统计.... 这题用并查集,思想很巧妙 ...
随机推荐
- Fiddler使用总结(一)
Fiddler基础知识 .Fiddler是强大的抓包工具,它的原理是以web代理服务器的形式进行工作的,使用的代理地址是:127.0.0.1,端口默认为8888,我们也可以通过设置进行修改. .代理就 ...
- Unity Lighting - The Precompute Process 预计算过程(二)
The Precompute Process 预计算过程 In Unity, precomputed lighting is calculated in the background - eith ...
- Java应用基础微专业-设计篇
第1章--抽象与接口 1.1 抽象 An abstract class can be created without abstract methods, the purpose of doing th ...
- 树莓派怎么连接无线网wifi?
没有显示器的同学,想要连接无线网,一定非常苦恼,前面教会了大家远程登录图形界面,下面我将教会大家:在没有图形界面的情况下,怎么连接树莓派WiFi.同样还是利用putty远程访问软件登录,但这次不需要登 ...
- kosaraju求强连通分量
在了解kosaraju算法之前我们先了解一下什么是强连通分量,在有向图中如果两个定点vi,ui存在一条路劲从vi到达ui且也存在一条路劲从ui到达vi那么由ui和vi这两个点构成的图成为强连通图,简洁 ...
- python读取日志,存入mysql
1.从 http://www.almhuette-raith.at/apache-log/access.log 下载 1万条日志记录,保存为一个文件,读取文件并解析日志,从日志中提取ip, time_ ...
- Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking---随笔
Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking DCF跟踪算法因边界效应,鲁棒性较差.SRD ...
- idea clion编译器
RNMV64P0LA-eyJsaWNlbnNlSWQiOiJSTk1WNjRQMExBIiwibGljZW5zZWVOYW1lIjoiY24gdHUiLCJhc3NpZ25lZU5hbWUiOiIiL ...
- node.js应用--转载
最近,在向大学生们介绍 HTML5 的时候,我想要对他们进行问卷调查,并向他们显示实时更新的投票结果.鉴于此目的,我决定快速构建一个用于此目的的问卷调查应用程序.我想要一个简单的架构,不需要太多不同的 ...
- java键盘IO
public class IO { public static void main(String[] args) throws Throwable { ScannerTest(); // testSc ...