Organising the Organisation

题目链接https://vjudge.net/problem/UVA-10766

Description:

I am the chief of the Personnel Division of a moderate-sized company that wishes to remain anonymous, and I am currently facing a small problem for which I need a skilled programmer’s help. Currently, our company is divided into several more or less independent divisions. In order to make our business more efficient, these need to be organised in a hierarchy, indicating which divisions are in charge of other divisions. For instance, if there are four divisions A, B, C and D we could organise them as in Figure 1, with division A controlling divisions B and D, and division D controlling division C. One of the divisions is Central Management (division A in the figure above), and should of course be at the top of the hierarchy, but the relative importance of the remaining divisions is not determined, so in Figure 1 above, division C and D could equally well have switched places so that C was in charge over division D. One complication, however, is that it may be impossible to get some divisions to cooperate with each other, and in such a case, neither of these divisions can be directly in charge of the other. For instance, if in the example above A and D are unable to cooperate, Figure 1 is not a valid way to organise the company. In general, there can of course be many different ways to organise the organisation, and thus it is desirable to find the best one (for instance, it is not a good idea to let the programming people be in charge of the marketing people). This job, however, is way too complicated for you, and your job is simply to help us find out how much to pay the consultant that we hire to find the best organisation for us. In order to determine the consultant’s pay, we need to find out exactly how difficult the task is, which is why you have to count exactly how many different ways there are to organise the organisation. Oh, and I need the answer in five hours.

Input:

The input consists of a series of test cases, at most 50, terminated by end-of-file. Each test cases begins with three integers n, m, k (1 ≤ n ≤ 50, 1 ≤ m ≤ n, 0 ≤ k ≤ 1500). n denotes the number of divisions in the company (for convenience, the divisions are numbered from 1 to n), and k indicates which division is the Central Management division. This is followed by m lines, each containing two integers 1 ≤ i, j ≤ n, indicating that division i and division j cannot cooperate (thus, i cannot be directly in charge of j and j cannot be directly in charge of i). You may assume that i and j are always different.

Output:

For each test case, print the number of possible ways to organise the company on a line by itself. This number will be at least 1 and at most 1015 . Note: The three possible hierarchies in the first sample case

Sample Input:

5 5 2 3 1 3 4 4 5 1 4 5 3 4 1 1 1 4 3 0 2

Sample Output:

3 8 3

题意:

给出n个点,然后一个主结点k,之后给出m个关系,每个关系会输入u,v,表示这两个点不能直接相连。最后问总方案数为多少。

题解:

生成树计数模板题,主要是Matrix-Tree定理,我现在还不会证...但是对于这类题知道就好了吧?

之后构造基尔霍夫矩阵就行了,就是度数矩阵 - 邻接矩阵。

然后用类似于高斯消元的方法去求解n-1阶行列式,最后主对角线的乘积就是答案。

具体见代码吧:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = ;
ll b[N][N];
int g[N][N];
int n,m,k;
ll Det(int n){
int i,j,k;
ll ret = ;
for(i=;i<=n;i++){
for(j = i+;j <= n;j++){
while(b[j][i]){
ll tmp=b[i][i]/b[j][i];
for(k = i;k <= n;k++)
b[i][k] -= tmp*b[j][k];
for(k=i;k<=n;k++)
swap(b[i][k],b[j][k]);
ret = -ret; //行列式性质
}
}
if(!b[i][i]) return ;
ret *= b[i][i];
}
if(ret < ) ret = -ret;
return ret;
}
int main(){
while(scanf("%d%d%d",&n,&m,&k)!=EOF){
memset(b,,sizeof(b));
memset(g,,sizeof(g));
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
if(u==v) continue ;
g[u][v]=g[v][u]=;//考虑重边
}
for(int i=;i<=n;i++){
b[i][i]=n-;
for(int j=;j<=n;j++){
if(i==j) continue ;
b[i][j]=-;
}
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(g[i][j]){
b[i][i]--;
b[i][j]=b[j][i]=;
}
}
}
printf("%lld\n",Det(n));
}
return ;
}

UVA10766:Organising the Organisation(生成树计数)的更多相关文章

  1. UVa 10766 Organising the Organisation (生成树计数)

    题意:给定一个公司的人数,然后还有一个boss,然后再给定一些人,他们不能成为直属上下级关系,问你有多少种安排方式(树). 析:就是一个生成树计数,由于有些人不能成为上下级关系,也就是说他们之间没有边 ...

  2. Uva10766 Organising the Organisation

    题目链接戳这里 基尔霍夫矩阵裸题.构建基尔霍夫矩阵(度数矩阵-邻接矩阵),求他的任意\(n-1\)阶主子式的绝对值即为答案. 这题开始用java写,结果BigInteger太慢Tle了. 后来用c++ ...

  3. 「UVA10766」Organising the Organisation(生成树计数)

    BUPT 2017 Summer Training (for 16) #6C 题意 n个点,完全图减去m条边,求生成树个数. 题解 注意可能会给重边. 然后就是生成树计数了. 代码 #include ...

  4. Organising the Organisation(uva10766)(生成树计数)

    Input Output Sample Input 5 5 2 3 1 3 4 4 5 1 4 5 3 4 1 1 1 4 3 0 2 Sample Output 3 8 3 题意: 有一张图上有\( ...

  5. 生成树的计数(基尔霍夫矩阵):UVAoj 10766 Organising the Organisation SPOJ HIGH - Highways

    HIGH - Highways   In some countries building highways takes a lot of time... Maybe that's because th ...

  6. Uva 10766 Organising the Organisation (Matrix_tree 生成树计数)

    题目描述: 一个由n个部门组成的公司现在需要分层,但是由于员工间的一些小小矛盾,使得他们并不愿意做上下级,问在满足他们要求以后有多少种分层的方案数? 解题思路: 生成树计数模板题,建立Kirchhof ...

  7. uva10766生成树计数

    此类题是给定一个无向图,求所有生成树的个数,生成树计数要用到Matrix-Tree定理(Kirchhoff矩阵-树定理) G的度数矩阵D[G]是一个n*n的矩阵,并且满足:当i≠j时,dij=0:当i ...

  8. kuangbin带你飞 生成树专题 : 次小生成树; 最小树形图;生成树计数

    第一个部分 前4题 次小生成树 算法:首先如果生成了最小生成树,那么这些树上的所有的边都进行标记.标记为树边. 接下来进行枚举,枚举任意一条不在MST上的边,如果加入这条边,那么肯定会在这棵树上形成一 ...

  9. 【BZOJ1002】【FJOI2007】轮状病毒(生成树计数)

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1766  Solved: 946[Submit][Status ...

随机推荐

  1. 小程序开发中,纯css实现内容收起折叠功能

    不多说,直接上代码: wxml页面: <!--收起折叠 begin--> <view style='width:100%;background:#fff;border-top:1px ...

  2. python常用命令—查看模块所在位置

    环境:ipython3 交互式解释器 语法: import 模块名 模块名.__file__ 功能: 查看模块的所在位置 例:

  3. vuejs学习之 项目打包之后的首屏加载优化

    vuejs学习之 项目打包之后的首屏加载优化 一:使用CDN资源 我们在打包时,会将package.json里,dependencies对象里插件打包起来,我们可以将其中的一些使用cdn的方式加载,例 ...

  4. linux下的常用技巧。

    xargs  linux下的多行合并~ [root@]# yum list installed|grep php|awk -F ' ' '{print $1}' php-channel-nrk.noa ...

  5. Python字符串中的r前缀

    在Python中,如果字符串的前面有r/R前缀,那么,就会禁用转义符\的功能: >>>path = r'C:\new\text.dat' >>>pah 'C:\\n ...

  6. 常用算法Java实现之冒泡排序

    冒泡排序是所有排序算法中最基本.最简单的一种.思想就是交换排序,通过比较和交换相邻的数据来达到排序的目的. 具体流程如下: 1.对要排序的数组中的数据,依次比较相邻的两个数据的大小. 2.如果前面的数 ...

  7. Java 类和Static关键字

    类的定义 类的命名.首字母大写 大括号后面没有分号 成员变量 Java会自动初始化成员变量但是不会自动初始化局部变量: 可以在定义成员变量是直接初始化,成员变量的作用范围在整个类体 对象的创建和引用的 ...

  8. Calculator 2

    github地址:https://github.com/YooRarely/object-oriented.git 新增: 计算类(拥有计算功能) 采用符号优先级计算方法 对符号不匹配的如 -2 ,自 ...

  9. 哈希表 STL map

    计数排序时我们使用一个数组来记录出现的数字的次数,而当数据范围太大时,无法建立一个那么大地数组(而且可能空间利用率很低,太浪费),此时可以改用hash table . binary search tr ...

  10. 团队作业7——第二次项目冲刺-Beta版本项目计划

    上一个阶段的总结: 在Alpha阶段,我们小组已近完成了大部分的功能要求,小组的每一个成员都发挥了自己的用处.经过了这么久的磨合,小组的成员之间越来越默契,相信在接下来的合作中,我们的开发速度会越来越 ...