zoj3256
好题,由m的范围知道这肯定是矩阵乘法加速插头dp,关键是怎么写
以往插头dp常用逐格递推,而这道题要求整行逐列递推
这样我们才能构造转移矩阵。
我们可以通过假象一个第0列来将路径转化为回路问题
逐列递推依然使用最小表示法,维护这一列每个格子向右的插头的连通性(最小表示法)
我们可以通过已知状态不断扩展出新的状态(初始显然只有无右插头和顶部底部有右插头两种情况)
对于一个已知列插头状态,我们穷举下一列每一个格子是否有插头,就知道了下一列每个格子是否有左插头和右插头
由于一个格子有且仅有两个插头,因此我们就确定了这一列的情况从而可以不断的扩展出新的合法状态
而最终合法状态不会超过150,接下来矩阵快速幂即可
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm> using namespace std;
typedef long long ll;
const int mo=;
const int has=;
int b[],v[],n,m,t;
struct node
{
int len,st[],p[has],nex[];
void clr()
{
len=;
memset(p,,sizeof(p));
}
int push(int nw)
{
int x=nw%has;
for (int i=p[x]; i>-; i=nex[i])
if (st[i]==nw) return i;
st[++len]=nw;
nex[len]=p[x]; p[x]=len;
return len;
}
} f; struct mat{
int a[][];
friend mat operator *(mat a,mat b)
{
mat c;
for (int i=; i<=t; i++)
for (int j=; j<=t; j++)
{
ll s=;
for (int k=; k<=t; k++) s+=(ll)a.a[i][k]*b.a[k][j];
c.a[i][j]=s%mo;
}
return c;
}
} ans,c; void get(int st)
{
for (int i=n-; i>=; i--)
{
b[i]=st&;
st>>=;
}
} int put()
{
memset(v,,sizeof(v)); v[]=;
int t=,st=;
for (int i=; i<n; i++)
{
if (v[b[i]]==-) v[b[i]]=++t;
st<<=;
st|=v[b[i]];
}
return st;
} bool check(int cur,int nw)
{
get(cur);
int pre=,k=,t=n;
for (int i=; i<n; i++)
{
int x=(nw>>i)&;
if (pre==)
{
if (!b[i]&&!x) return ;
if (b[i]&&x) continue;
if (b[i]) {pre=b[i];b[i]=;}
else pre=-;
k=i;
}
else {
if (b[i]&&x) return ;
if (!b[i]&&!x) continue;
if (b[i])
{
if (b[i]==pre&&(nw!=||i!=n-)) return ;
if (pre>)
{
for (int r=; r<n; r++)
if (i!=r&&b[r]==b[i]) b[r]=pre;
b[i]=;
}
else {b[k]=b[i],b[i]=;}
}
else {
if (pre>) b[i]=pre;
else b[i]=b[k]=++t;
}
pre=;
}
}
return pre==;
} void quick(int n)
{
memset(ans.a,,sizeof(ans.a));
for (int i=; i<=t; i++) ans.a[i][i]=;
while (n)
{
if (n&) ans=ans*c;
c=c*c;
n>>=;
}
} int main()
{
while (scanf("%d%d",&n,&m)!=EOF)
{
memset(b,,sizeof(b));
memset(c.a,,sizeof(c.a));
f.clr();
f.push();
b[]=b[n-]=; f.push(put());
for (int i=; i<=f.len; i++)
for (int j=; j<(<<n); j++)
if (check(f.st[i],j))
{
int k=f.push(put());
c.a[i][k]=;
}
t=f.len;
quick(m);
if (ans.a[][]==) puts("Impossible");
else printf("%d\n",ans.a[][]);
}
}
zoj3256的更多相关文章
- [ZOJ3256] Tour in the Castle
插头DP+矩阵乘法 m喜闻乐见地达到了10^9级别..而n<=7,并且没有障碍..所以列与列之间的转移时一样的..就可以上矩乘了. 感觉自己快没救了..看半天题解还是不懂.. http://ww ...
随机推荐
- Flink之状态之状态存储 state backends
流计算中可能有各种方式来保存状态: 窗口操作 使用 了KV操作的函数 继承了CheckpointedFunction的函数 当开始做checkpointing的时候,状态会被持久化到checkpoin ...
- [Java] Java常见错误
1.处理java错误"编码 GBK 的不可映射字符" (1)首先记事本打开java源文件 (2)然后另存为,选择ANSI编码 (3)覆盖 (4)再试一下,ok,编译通过.
- [CCF] 201612-2 工资计算
[思路]按照题意对初始工资S进行循环,计算缴税后工资,若与T相等则退出循环,输出结果. #include <iostream> #include <windows.h> usi ...
- 【python】time 和datetime类型转换,字符串型变量转成日期型变量
s1='20120125'; 6 s2='20120216'; 7 a=time.strptime(s1,'%Y%m%d'); 8 b=time.strptime( ...
- mii-tool与ethtool的用法详解
mii-tool与ethtool的用法详解 1.mii-tool 配置网络设备协商方式的工具: 感谢原文作者!原文地址:http://blog.chinaunix.net/uid-20639775-i ...
- bzoj 1878
莫队乱搞的第一题,(感觉这个算法初学的时候就能想到啊) 总之就是离线,然后扫一遍然后回答,用数组记录状态 但还是有一个地方不太明白 为什么要除siz?这样为什么会优化复杂度呢?? bool cmp(c ...
- 【BZOJ 4556】[Tjoi2016&Heoi2016]字符串 SAM+二分+主席树
这道题市面上就两种法:一种是SA+二分+主席树,一种是SAM+二分+主席树(有不少人打线段树合并???)(除此之外还有一种利用炒鸡水的数据的暴力SA,贼快.....)(当时学SA的时候没做这道题,现在 ...
- 【BZOJ 3925】[Zjoi2015]地震后的幻想乡 期望概率dp+状态压缩+图论知识+组合数学
神™题........ 这道题的提示......(用本苣蒻并不会的积分积出来的)并没有 没有什么卵用 ,所以你发现没有那个东西并不会 不影响你做题 ,然后你就可以推断出来你要求的是我们最晚挑到第几大的 ...
- [hihocoder 1050]求树的最长链
题目链接:http://hihocoder.com/problemset/problem/1050 两种方法: 1. 两遍dfs,第一次随便找一个根,找到距离这个根最远的点,这个点必然是最长链的一端. ...
- 怎么把centos虚拟机zip文件导入vm虚拟机中
执行以上三步就可以将一个压缩的centoszip文件导入到虚拟机中