zoj3256
好题,由m的范围知道这肯定是矩阵乘法加速插头dp,关键是怎么写
以往插头dp常用逐格递推,而这道题要求整行逐列递推
这样我们才能构造转移矩阵。
我们可以通过假象一个第0列来将路径转化为回路问题
逐列递推依然使用最小表示法,维护这一列每个格子向右的插头的连通性(最小表示法)
我们可以通过已知状态不断扩展出新的状态(初始显然只有无右插头和顶部底部有右插头两种情况)
对于一个已知列插头状态,我们穷举下一列每一个格子是否有插头,就知道了下一列每个格子是否有左插头和右插头
由于一个格子有且仅有两个插头,因此我们就确定了这一列的情况从而可以不断的扩展出新的合法状态
而最终合法状态不会超过150,接下来矩阵快速幂即可
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm> using namespace std;
typedef long long ll;
const int mo=;
const int has=;
int b[],v[],n,m,t;
struct node
{
int len,st[],p[has],nex[];
void clr()
{
len=;
memset(p,,sizeof(p));
}
int push(int nw)
{
int x=nw%has;
for (int i=p[x]; i>-; i=nex[i])
if (st[i]==nw) return i;
st[++len]=nw;
nex[len]=p[x]; p[x]=len;
return len;
}
} f; struct mat{
int a[][];
friend mat operator *(mat a,mat b)
{
mat c;
for (int i=; i<=t; i++)
for (int j=; j<=t; j++)
{
ll s=;
for (int k=; k<=t; k++) s+=(ll)a.a[i][k]*b.a[k][j];
c.a[i][j]=s%mo;
}
return c;
}
} ans,c; void get(int st)
{
for (int i=n-; i>=; i--)
{
b[i]=st&;
st>>=;
}
} int put()
{
memset(v,,sizeof(v)); v[]=;
int t=,st=;
for (int i=; i<n; i++)
{
if (v[b[i]]==-) v[b[i]]=++t;
st<<=;
st|=v[b[i]];
}
return st;
} bool check(int cur,int nw)
{
get(cur);
int pre=,k=,t=n;
for (int i=; i<n; i++)
{
int x=(nw>>i)&;
if (pre==)
{
if (!b[i]&&!x) return ;
if (b[i]&&x) continue;
if (b[i]) {pre=b[i];b[i]=;}
else pre=-;
k=i;
}
else {
if (b[i]&&x) return ;
if (!b[i]&&!x) continue;
if (b[i])
{
if (b[i]==pre&&(nw!=||i!=n-)) return ;
if (pre>)
{
for (int r=; r<n; r++)
if (i!=r&&b[r]==b[i]) b[r]=pre;
b[i]=;
}
else {b[k]=b[i],b[i]=;}
}
else {
if (pre>) b[i]=pre;
else b[i]=b[k]=++t;
}
pre=;
}
}
return pre==;
} void quick(int n)
{
memset(ans.a,,sizeof(ans.a));
for (int i=; i<=t; i++) ans.a[i][i]=;
while (n)
{
if (n&) ans=ans*c;
c=c*c;
n>>=;
}
} int main()
{
while (scanf("%d%d",&n,&m)!=EOF)
{
memset(b,,sizeof(b));
memset(c.a,,sizeof(c.a));
f.clr();
f.push();
b[]=b[n-]=; f.push(put());
for (int i=; i<=f.len; i++)
for (int j=; j<(<<n); j++)
if (check(f.st[i],j))
{
int k=f.push(put());
c.a[i][k]=;
}
t=f.len;
quick(m);
if (ans.a[][]==) puts("Impossible");
else printf("%d\n",ans.a[][]);
}
}
zoj3256的更多相关文章
- [ZOJ3256] Tour in the Castle
插头DP+矩阵乘法 m喜闻乐见地达到了10^9级别..而n<=7,并且没有障碍..所以列与列之间的转移时一样的..就可以上矩乘了. 感觉自己快没救了..看半天题解还是不懂.. http://ww ...
随机推荐
- [OS] 进程相关知识点
进程概念: 1.程序在执行中 2.一个具有一定独立功能的程序在一个数据集合上的一次动态执行过程,是系统进行资源分配和调度的独立单位. 进程与程序的差别: ·进程----动态, 程序----静态 ·进程 ...
- sqoop工具从oracle导入数据2
sqoop工具从oracle导入数据 sqoop工具是hadoop下连接关系型数据库和Hadoop的桥梁,支持关系型数据库和hive.hdfs,hbase之间数据的相互导入,可以使用全表导入和增量导入 ...
- hihocoder 1320 压缩字符串(字符串+dp)
题解: 其实就是对应三种dp的转移方式 1.拼接类型 dp[i][j] = dp[i][c] + dp[c][j] 2.不变类型 dp[i][j] = j-i+1 3.重复类型(必须满足有k个循环节) ...
- 【NOIP模拟赛】beautiful 乱搞(平衡树)+ST
biubiu~~~ 我用平衡树处理的这道题,然而这种方法还是要看评测姬..... 正解是乱搞....就是枚举每一位数作为中位数,比他小的看做-1比他大的看做1,那么我们从一开始就有了一个绵延的山,我们 ...
- CSS3不遥远,几个特性你要知道
CSS是众所周知且应用广泛的网站样式语言,在它的版本三(CSS3)计划中,新增了一些能够节省时间的特性.尽管只有当前最新了浏览器版本才能支持这些 效果,但了解它们还是必须且很有趣味性的.CSS3中的5 ...
- 封装安卓的okhttp
1.封装了get方法,handler更新主线程,回调的onsuccess,onfailure,onerror等方法 2.配置文件 api 'com.android.support:recyclervi ...
- mysql__视图
视图 1.什么是视图 视图是一种虚拟存在的表,对于使用视图的用户来说基本上是透明的.视图并不是在数据库中实际存在的,行和列数据来自定义视图的查询中使用的表,并且是在使用视图时动态生成的 视图相对于普通 ...
- sql异常-The used SELECT statements have a different number of columns
两个或多个select查询进行union时,查询的列不对应.两个select进行union时,两个select的查询出的列必须相对应.
- Sencha Touch MVC 中 store 的使用
I have a UserStore that I want to load after succesful login of a user. I can't get this to work i.e ...
- Java并发(10)- 简单聊聊JDK中的七大阻塞队列
引言 JDK中除了上文提到的各种并发容器,还提供了丰富的阻塞队列.阻塞队列统一实现了BlockingQueue接口,BlockingQueue接口在java.util包Queue接口的基础上提供了pu ...