哇,难受得一匹.

看到题的一瞬间竟然只想到了\(n^3\)的区间\(DP\)

一.\(40pts\)

设\(f[i][j]\)代表删去\(i\)到\(j\)这一段区间的最小代价和.

然后直接写普通的区间\(DP\)即可.

for(int i=n-1;i>=1;i--)
for(int j=i+1;j<=n;j++)
{
f[i][j]=abs(a[j]-a[i]);
for(int k=i+1;k<j-1;k++)
f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]);
}
二.\(70pts\)

设\(f[i]\)代表删去\(1\)到\(i\)这一段的最小代价和.

两分钟写的比考试的时候写到的要得分高qwq

然后\(n^2\)枚举即可.

for(int i=1;i<=n;i++)
for(int j=1;j<i;j++)
f[i]=min(f[i],f[j-1]+abs(a[j]-a[i]));
三.\(100pts\)

考虑优化,我们的状态转移的第二项会有两种情况.

这里设\(A=a[i]\),\(B=a[j]\)。

\(abs\)会出现两种情况

\[f[i]=f[j-1]+A-B\ (A\leq B)\\f[i]=f[j-1]+B-A\ ( B<A)
\]

此时\(A\)已知,因此维护两个东西.

  1. \(f[j-1]+B\)
  2. \(f[j-1]-B\)

用什么维护?发现这个东西是前缀,所以考虑树状数组

维护的东西就是上面的,然后每次询问之后,再加入\(f[i-1]+A\)与\(f[i-1]-B\)

PS:这里要开两个树状数组,具体看代码。

注意其中一个树状数组要反转.

代码

#include<cstdio>
#include<cctype>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#define N 500008
#define R register
#define clear(a,b) memset(a,b,sizeof a)
#define int long long
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int f[N],a[N],n,b[N];
#define lowbit(o) o&-o
int aa[N],bb[N];
inline void adda(int o,int x)
{
for(;o<=n;o+=lowbit(o))
aa[o]=min(aa[o],x);
}
inline void addb(int o,int x)e
{
o=n-o+1;
for(;o<=n;o+=lowbit(o))
bb[o]=min(bb[o],x);
}
inline int querya(int o)
{
R int res=214748364000LL;
for(;o;o-=lowbit(o))
res=min(res,aa[o]);
return res;
}
inline int queryb(int o)
{
R int res=214748364000LL;
o=n-o+1;
for(;o;o-=lowbit(o))
res=min(res,bb[o]);
return res;
}
signed main()
{
freopen("remove.in","r",stdin);
freopen("remove.out","w",stdout);
in(n);
for(R int i=1;i<=n;i++)in(a[i]),b[i]=a[i];
sort(b+1,b+n+1);
for(R int i=1;i<=n;i++)a[i]=lower_bound(b+1,b+n+1,a[i])-b;
clear(f,0x3f);f[0]=0;
clear(bb,0x3f),clear(aa,0x3f);
for(R int i=1;i<=n;i++)
{
int tma=querya(a[i]),tmb=queryb(a[i]);
f[i]=min(f[i],b[a[i]]+tma);
f[i]=min(f[i],-b[a[i]]+tmb);
adda(a[i],f[i-1]-b[a[i]]);
addb(a[i],f[i-1]+b[a[i]]);
}
printf("%lld",f[n]);
}

树状数组优化DP 【模拟赛】删区间的更多相关文章

  1. Codeforces 946G Almost Increasing Array (树状数组优化DP)

    题目链接   Educational Codeforces Round 39 Problem G 题意  给定一个序列,求把他变成Almost Increasing Array需要改变的最小元素个数. ...

  2. HDU 6240 Server(2017 CCPC哈尔滨站 K题,01分数规划 + 树状数组优化DP)

    题目链接  2017 CCPC Harbin Problem K 题意  给定若干物品,每个物品可以覆盖一个区间.现在要覆盖区间$[1, t]$. 求选出来的物品的$\frac{∑a_{i}}{∑b_ ...

  3. LUOGU P2344 奶牛抗议 (树状数组优化dp)

    传送门 解题思路 树状数组优化dp,f[i]表示前i个奶牛的分组的个数,那么很容易得出$f[i]=\sum\limits_{1\leq j\leq i}f[j-1]*(sum[i]\ge sum[j- ...

  4. 【题解】Music Festival(树状数组优化dp)

    [题解]Music Festival(树状数组优化dp) Gym - 101908F 题意:有\(n\)种节目,每种节目有起始时间和结束时间和权值.同一时刻只能看一个节目(边界不算),在所有种类都看过 ...

  5. 【题解】ARC101F Robots and Exits(DP转格路+树状数组优化DP)

    [题解]ARC101F Robots and Exits(DP转格路+树状数组优化DP) 先删去所有只能进入一个洞的机器人,这对答案没有贡献 考虑一个机器人只能进入两个洞,且真正的限制条件是操作的前缀 ...

  6. 4.9 省选模拟赛 划分序列 二分 结论 树状数组优化dp

    显然发现可以二分. 对于n<=100暴力dp f[i][j]表示前i个数分成j段对于当前的答案是否可行. 可以发现这个dp是可以被优化的 sum[i]-sum[j]<=mid sum[i] ...

  7. Codeforces 909C Python Indentation:树状数组优化dp

    题目链接:http://codeforces.com/contest/909/problem/C 题意: Python是没有大括号来标明语句块的,而是用严格的缩进来体现. 现在有一种简化版的Pytho ...

  8. BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】

    Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...

  9. Codeforces 629D Babaei and Birthday Cake(树状数组优化dp)

    题意: 线段树做法 分析: 因为每次都是在当前位置的前缀区间查询最大值,所以可以直接用树状数组优化.比线段树快了12ms~ 代码: #include<cstdio> #include< ...

  10. BZOJ 3594: [Scoi2014]方伯伯的玉米田 (二维树状数组优化DP)

    分析 首先每次增加的区间一定是[i,n][i,n][i,n]的形式.因为如果选择[i,j](j<n)[i,j](j<n)[i,j](j<n)肯定不如把后面的全部一起加111更优. 那 ...

随机推荐

  1. 【BZOJ 3172】[Tjoi2013]单词 AC自动机

    关于AC自动机:一个在kmp与Trie的基础上建立的数据结构,关键在于Trie树结构与fail指针,他们各有各的应用.在AC自动机里最典型的就是多串匹配,原本效率为O(n*l+n*l+m*l),(n是 ...

  2. ubuntu下opencv使用cvNamedWindow()和cvShowImage()出错的解决方法

    重装系统和opencv,编译运行显示一副图像的程序,报错如下 liurf@liurf-Lenovo-G470:~/WorkSpace/slambook-master/ch5/imageBasics$ ...

  3. Idea 怎么远程debug

    注意的问题:远程debug别人的服务器只能开一个debug,所以当你的同事比你先远程debug同一台服务器时,你应该报Error running 某某ip地址 .unable to open debu ...

  4. wget、yum、rpm、apt-get区别

    wget 类似于迅雷,是一种下载工具, 通过HTTP.HTTPS.FTP三个最常见的TCP/IP协议下载,并可以使用HTTP代理 名字是World Wide Web”与“get”的结合. yum: 是 ...

  5. OSI 七层模型和 TCP/IP 四层模型 及 相关网络协议

    简介 OSI 是理论上的模型,也就是一个统一的国际标准,现在的很多网络设备或者是网络协议都不同程度的精简了自己的所谓的模型,那么他们为了自己的通讯兼容都会参考这个OSI模型 TCP/IP 包括: TC ...

  6. 前端面试:js闭包,为什么要使用闭包

    要理解闭包,首先理解javascript特殊的变量作用域,变量的作用于无非就是两种:全局变量,局部变量. javascript语言的特殊处就是函数内部可以读取全局变量. 1.如何从外部读取局部变量? ...

  7. Eclipse Jetty调试时无法保存js文件

    Jetty会使用内存映射文件来缓存静态文件,包括js,css文件. 在Windows下,使用内存映射文件会导致文件被锁定,所以当Jetty启动的时候无法在编辑器对js或者css文件进行编辑. 解决办法 ...

  8. spring和Quartz的定时功能

    一:前沿 最近在做一个定时的功能,就是在一定时间内查询订单,然后告诉用户未付款,已付款等消息通知,而且要做集群的功能,这个集群的功能是指,我部署两套代码,其中一个定时的功能在运行,另外一个就不要运行. ...

  9. 填坑webpack

    1.Concepts: webpack is a module bundler for modern JS applications. Since there are lots of complex ...

  10. 关于jQuery.extend

    这次来了解下jQuery的extend吧,作为菜鸟的我学艺不精,看插件时经常看到extend函数的使用,从网上看到一篇不错的介绍,特地转载过来留给自己收藏学习: ------------------- ...