哇,难受得一匹.

看到题的一瞬间竟然只想到了\(n^3\)的区间\(DP\)

一.\(40pts\)

设\(f[i][j]\)代表删去\(i\)到\(j\)这一段区间的最小代价和.

然后直接写普通的区间\(DP\)即可.

for(int i=n-1;i>=1;i--)
for(int j=i+1;j<=n;j++)
{
f[i][j]=abs(a[j]-a[i]);
for(int k=i+1;k<j-1;k++)
f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]);
}
二.\(70pts\)

设\(f[i]\)代表删去\(1\)到\(i\)这一段的最小代价和.

两分钟写的比考试的时候写到的要得分高qwq

然后\(n^2\)枚举即可.

for(int i=1;i<=n;i++)
for(int j=1;j<i;j++)
f[i]=min(f[i],f[j-1]+abs(a[j]-a[i]));
三.\(100pts\)

考虑优化,我们的状态转移的第二项会有两种情况.

这里设\(A=a[i]\),\(B=a[j]\)。

\(abs\)会出现两种情况

\[f[i]=f[j-1]+A-B\ (A\leq B)\\f[i]=f[j-1]+B-A\ ( B<A)
\]

此时\(A\)已知,因此维护两个东西.

  1. \(f[j-1]+B\)
  2. \(f[j-1]-B\)

用什么维护?发现这个东西是前缀,所以考虑树状数组

维护的东西就是上面的,然后每次询问之后,再加入\(f[i-1]+A\)与\(f[i-1]-B\)

PS:这里要开两个树状数组,具体看代码。

注意其中一个树状数组要反转.

代码

#include<cstdio>
#include<cctype>
#include<cmath>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream>
#define N 500008
#define R register
#define clear(a,b) memset(a,b,sizeof a)
#define int long long
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int f[N],a[N],n,b[N];
#define lowbit(o) o&-o
int aa[N],bb[N];
inline void adda(int o,int x)
{
for(;o<=n;o+=lowbit(o))
aa[o]=min(aa[o],x);
}
inline void addb(int o,int x)e
{
o=n-o+1;
for(;o<=n;o+=lowbit(o))
bb[o]=min(bb[o],x);
}
inline int querya(int o)
{
R int res=214748364000LL;
for(;o;o-=lowbit(o))
res=min(res,aa[o]);
return res;
}
inline int queryb(int o)
{
R int res=214748364000LL;
o=n-o+1;
for(;o;o-=lowbit(o))
res=min(res,bb[o]);
return res;
}
signed main()
{
freopen("remove.in","r",stdin);
freopen("remove.out","w",stdout);
in(n);
for(R int i=1;i<=n;i++)in(a[i]),b[i]=a[i];
sort(b+1,b+n+1);
for(R int i=1;i<=n;i++)a[i]=lower_bound(b+1,b+n+1,a[i])-b;
clear(f,0x3f);f[0]=0;
clear(bb,0x3f),clear(aa,0x3f);
for(R int i=1;i<=n;i++)
{
int tma=querya(a[i]),tmb=queryb(a[i]);
f[i]=min(f[i],b[a[i]]+tma);
f[i]=min(f[i],-b[a[i]]+tmb);
adda(a[i],f[i-1]-b[a[i]]);
addb(a[i],f[i-1]+b[a[i]]);
}
printf("%lld",f[n]);
}

树状数组优化DP 【模拟赛】删区间的更多相关文章

  1. Codeforces 946G Almost Increasing Array (树状数组优化DP)

    题目链接   Educational Codeforces Round 39 Problem G 题意  给定一个序列,求把他变成Almost Increasing Array需要改变的最小元素个数. ...

  2. HDU 6240 Server(2017 CCPC哈尔滨站 K题,01分数规划 + 树状数组优化DP)

    题目链接  2017 CCPC Harbin Problem K 题意  给定若干物品,每个物品可以覆盖一个区间.现在要覆盖区间$[1, t]$. 求选出来的物品的$\frac{∑a_{i}}{∑b_ ...

  3. LUOGU P2344 奶牛抗议 (树状数组优化dp)

    传送门 解题思路 树状数组优化dp,f[i]表示前i个奶牛的分组的个数,那么很容易得出$f[i]=\sum\limits_{1\leq j\leq i}f[j-1]*(sum[i]\ge sum[j- ...

  4. 【题解】Music Festival(树状数组优化dp)

    [题解]Music Festival(树状数组优化dp) Gym - 101908F 题意:有\(n\)种节目,每种节目有起始时间和结束时间和权值.同一时刻只能看一个节目(边界不算),在所有种类都看过 ...

  5. 【题解】ARC101F Robots and Exits(DP转格路+树状数组优化DP)

    [题解]ARC101F Robots and Exits(DP转格路+树状数组优化DP) 先删去所有只能进入一个洞的机器人,这对答案没有贡献 考虑一个机器人只能进入两个洞,且真正的限制条件是操作的前缀 ...

  6. 4.9 省选模拟赛 划分序列 二分 结论 树状数组优化dp

    显然发现可以二分. 对于n<=100暴力dp f[i][j]表示前i个数分成j段对于当前的答案是否可行. 可以发现这个dp是可以被优化的 sum[i]-sum[j]<=mid sum[i] ...

  7. Codeforces 909C Python Indentation:树状数组优化dp

    题目链接:http://codeforces.com/contest/909/problem/C 题意: Python是没有大括号来标明语句块的,而是用严格的缩进来体现. 现在有一种简化版的Pytho ...

  8. BZOJ3594: [Scoi2014]方伯伯的玉米田【二维树状数组优化DP】

    Description 方伯伯在自己的农田边散步,他突然发现田里的一排玉米非常的不美. 这排玉米一共有N株,它们的高度参差不齐. 方伯伯认为单调不下降序列很美,所以他决定先把一些玉米拔高,再把破坏美感 ...

  9. Codeforces 629D Babaei and Birthday Cake(树状数组优化dp)

    题意: 线段树做法 分析: 因为每次都是在当前位置的前缀区间查询最大值,所以可以直接用树状数组优化.比线段树快了12ms~ 代码: #include<cstdio> #include< ...

  10. BZOJ 3594: [Scoi2014]方伯伯的玉米田 (二维树状数组优化DP)

    分析 首先每次增加的区间一定是[i,n][i,n][i,n]的形式.因为如果选择[i,j](j<n)[i,j](j<n)[i,j](j<n)肯定不如把后面的全部一起加111更优. 那 ...

随机推荐

  1. [CF895C]Square Subsets

    题目大意:给一个集合$S$($1\leq S_i\leq 70$),选择一个非空子集,使它们的乘积等于某个整数的平方的方法的数量. 求方案数,若两种方法选择的元素的索引不同,则认为是不同的方法. 题解 ...

  2. JavaScript几种数组去掉重复值的方法

    数组去重复是一个常见的需求,我们暂时考虑同类型的数组去重复.主要是理清思路和考虑下性能.以下方法,网上基本都有,这里只是简单地总结一下. 思路: 遍历数组,一一比较,比较到相同的就删除后面的 遍历数组 ...

  3. vim插件修改背景颜色和代码颜色

    ls /usr/share/vim/vim74/colorsblue.vim default.vim desert.vim evening.vim morning.vim pablo.vim READ ...

  4. [Usaco2005 Dec]Cleaning Shifts 清理牛棚 (DP优化/线段树)

    [Usaco2005 Dec] Cleaning Shifts 清理牛棚 题目描述 Farmer John's cows, pampered since birth, have reached new ...

  5. Spring随笔 —— IOC配置的三种不同方式简介

    在spring framework中,IOC的配置是最基础的部分,常见的配置方式有基于xml文件和基于注解的配置方式.除了这两种配置方式之外,今天这里再介绍另一种配置方式,先用小demo重温下我们熟悉 ...

  6. Planning your upgrade with Upgrade Advisor

    Planning your upgrade with Upgrade Advisor You should use the Upgrade Advisor tool (if it is availab ...

  7. Install the AWS Command Line Interface on Linux

    Install the AWS Command Line Interface on Linux You can install the AWS Command Line Interface and i ...

  8. jquery 的相关 width 和 height 方法辨析

    width() 设置或返回元素的宽度(不包括内边距.边框或外边距). height() 设置或返回元素的高度(不包括内边距.边框或外边距). innerWidth() 返回元素的宽度(包括内边距). ...

  9. centos yum 安装 mysql

      centos7下使用yum安装mysql 时间:2015-03-07 21:26:20      阅读:87445      评论:0      收藏:1      [点我收藏+] 标签: Cen ...

  10. 01-modal Demo示例程序源代码

    源代码下载链接:01-modal.zip37.8 KB // MJAppDelegate.h // //  MJAppDelegate.h //  01-modal // //  Created by ...