BP算法在minist上的简单实现

数据:http://yann.lecun.com/exdb/mnist/

参考:blog,blog2,blog3,tensorflow

推导:http://www.cnblogs.com/yueshangzuo/p/8025157.html

基本实现

import struct
import random
import numpy as np
from math import sqrt class Data:
def __init__(self):
print 'parameter initializing...'
self.num_train= 50000
self.num_confirm=10000
self.num_test= 10000
self.node_in=28*28
self.node_out=10
# need to adjust
#epoch:8 hide_node:39 accuracy:0.9613
#epoch:8 hide_node:44 accuracy:0.9612
#epoch:8 hide_node:48 accuracy:0.9624
#epoch:9 hide_node:48 accuracy:0.9648
#epoch:10 hide_node:200 accuracy:0.9724
self.epoch= 15
self.node_hide= 30
self.study_rate= 0.05
self.error_limit= 1e-2 def read_train_image(self,filename):
print 'reading train-image data...'
binfile=open(filename,'rb')
buffer=binfile.read()
index=0
magic,num,rows,colums = struct.unpack_from('>IIII',buffer,index) #>I:big-endian,unsigned int
index+=struct.calcsize('IIII')
for i in range(self.num_train):
im=struct.unpack_from('784B',buffer,index) #28*28=786,B unsigned char
index+=struct.calcsize('784B')
im=np.array(im)
im=im.reshape(1,784)/255.0 #28*28-->1
self.train_imag_list[i,:]=im
j=0
for i in range(self.num_train,self.num_train+self.num_confirm):
im=struct.unpack_from('784B',buffer,index)
index+=struct.calcsize('784B')
im=np.array(im)
im=im.reshape(1,784)/255.0
self.confirm_imag_list[j,:]=im
j=j+1 def read_train_label(self,filename):
print 'reading train-label data...'
binfile=open(filename,'rb')
buffer=binfile.read()
index=0
magic,num= struct.unpack_from('>II',buffer,index)
index+=struct.calcsize('II')
for i in range(self.num_train):
lb=struct.unpack_from('B',buffer,index)
index+=struct.calcsize('B')
lb=int(lb[0])
self.train_label_list[i,:]=lb
j=0
for i in range(self.num_train,self.num_train+self.num_confirm):
lb=struct.unpack_from('B',buffer,index)
index+=struct.calcsize('B')
lb=int(lb[0])
self.confirm_label_list[j,:]=lb
j=j+1 def read_test_image(self,filename):
print 'reading test-image data...'
binfile=open(filename,'rb')
buffer=binfile.read()
index=0
magic,num,rows,colums = struct.unpack_from('>IIII',buffer,index)
index+=struct.calcsize('IIII') for i in range(self.num_test):
im=struct.unpack_from('784B',buffer,index)
index+=struct.calcsize('784B')
im=np.array(im)
im=im.reshape(1,784)/256.0
self.test_imag_list[i,:]=im def read_test_label(self,filename):
print 'reading test-label data...'
binfile=open(filename,'rb')
buffer=binfile.read()
index=0
magic,num= struct.unpack_from('>II',buffer,index)
index+=struct.calcsize('II') for i in range(self.num_test):
lb=struct.unpack_from('B',buffer,index)
index+=struct.calcsize('B')
lb=int(lb[0])
self.test_label_list[i,:]=lb def init_network(self):
print 'network initializing...'
self.train_imag_list=np.zeros((self.num_train,self.node_in))
self.train_label_list=np.zeros((self.num_train,1))
self.confirm_imag_list=np.zeros((self.num_confirm,self.node_in))
self.confirm_label_list=np.zeros((self.num_confirm,1))
self.test_imag_list=np.zeros((self.num_test,self.node_in))
self.test_label_list=np.zeros((self.num_test,1)) self.read_train_image('train-images.idx3-ubyte')
self.read_train_label('train-labels.idx1-ubyte')
self.read_test_image('t10k-images.idx3-ubyte')
self.read_test_label('t10k-labels.idx1-ubyte') self.wjk=(np.random.rand(self.node_hide,self.node_out)-0.5)*2/sqrt(self.node_hide)
self.wj0=(np.random.rand(self.node_out)-0.5)*2/sqrt(self.node_hide)
self.wij=(np.random.rand(self.node_in,self.node_hide)-0.5)*2/sqrt(self.node_in)
self.wi0=(np.random.rand(self.node_hide)-0.5)*2/sqrt(self.node_in) def sigmode(self,x):
return 1.0/(1.0+np.exp(-x)) def calc_yjzk(self,sample_i,imag_list):
self.netj=np.dot(imag_list[sample_i],self.wij)+self.wi0
self.yj=self.sigmode(self.netj) self.netk=np.dot(self.yj,self.wjk)+self.wj0
self.zk=self.sigmode(self.netk) def calc_error(self):
ans=0.0
for sample_i in range(self.num_confirm):
self.calc_yjzk(sample_i,self.confirm_imag_list)
label_tmp=np.zeros(self.node_out)
label_tmp[int(self.confirm_label_list[sample_i])]=1
ans=ans+sum(np.square(label_tmp-self.zk)/2.0)
# print ans
return ans def training(self):
print 'training model...'
for epoch_i in range(self.epoch):
for circle in range(self.num_train):
sample_i=np.random.randint(0,self.num_train)
#print 'debug epoch:%d sample:%d' % (epoch_i,sample_i)
#calc error
#error_before=self.calc_error()
self.calc_yjzk(sample_i,self.train_imag_list)
#update weight hide->out
tmp_label=np.zeros(self.node_out)
tmp_label[int(self.train_label_list[sample_i])]=1
delta_k=(self.zk-tmp_label)*self.zk*(1-self.zk)
self.yj.shape=(self.node_hide,1)
delta_k.shape=(1,self.node_out)
self.wjk=self.wjk-self.study_rate*np.dot(self.yj,delta_k)
#update weight in->hide
self.yj=self.yj.T
delta_j=np.dot(delta_k,self.wjk.T)*self.yj*(1-self.yj)
tmp_imag=self.train_imag_list[sample_i]
tmp_imag.shape=(self.node_in,1)
self.wij=self.wij-self.study_rate*np.dot(tmp_imag,delta_j)
# calc error
# self.calc_yjzk(sample_i,self.train_imag_list)
# error_delta=error_before-self.calc_error()
# if np.abs(error_delta)<self.error_limit:
# print 'debug break'
# print error_delta
# break
#print 'error %d %.2f' % (epoch_i,self.calc_error()) def testing(self):
print 'testing...'
num_right=0.0
for sample_i in range(self.num_test):
self.calc_yjzk(sample_i,self.test_imag_list)
ans=self.zk.argmax()
if ans==int(self.test_label_list[sample_i]):
num_right=num_right+1
self.accuracy=num_right/self.num_test
print 'accuracy: %.4f' % (self.accuracy*100) +'%'
def main():
data=Data()
data.init_network()
data.training()
data.testing() if __name__=='__main__':
main()

注意

  1. 注意数据的编码格式,在数据来源网站最底下有指出,上面还展示了一些机器学习的经典模型在minist数据集上的错误率可供参考
  2. 权值合理的初始化,及迭代次数,学习速率,隐层节点数的设置可参考经验值
  3. 数据的归一化(防止sigmode函数溢出)
  4. 矩阵乘法时注意行列条件的满足
  5. 合理的epoch(即迭代次数,学习速率小的时候可以大一点的迭代次数,学习速率大的时候迭代次数取较小值)
  6. 确认合适的迭代次数后可去掉确认集,用全部的样本数据训练模型
  7. 隐层节点基本上越多越好

调参脚本

import ann

f=open('best_parameter', 'a+')
for e in range(10,40):
for node in range(10,50):
data=ann.Data()
data.node_hide=node
data.epoch=e
data.init_network()
data.training()
data.testing()
ans='circling to get best parameter----->epoch:%d hide_node:%d accuracy:%.4f\n' % (e,node,data.accuracy)
print ans
f.write(ans)
f.close()

可迭代计算迭代次数和隐层节点的数目对准确率的影响,大致规律是在学习速率0.05时,迭代次数在10-15为宜,隐层节点30以上

一些试验的结果如下:

circling to get best parameter----->epoch:14 hide_node:43 accuracy:0.9656
circling to get best parameter----->epoch:14 hide_node:44 accuracy:0.9651
circling to get best parameter----->epoch:14 hide_node:45 accuracy:0.9638
circling to get best parameter----->epoch:14 hide_node:46 accuracy:0.9641
circling to get best parameter----->epoch:14 hide_node:47 accuracy:0.9649
circling to get best parameter----->epoch:14 hide_node:48 accuracy:0.9651
circling to get best parameter----->epoch:14 hide_node:49 accuracy:0.9671
circling to get best parameter----->epoch:15 hide_node:46 accuracy:0.9661
circling to get best parameter----->epoch:15 hide_node:47 accuracy:0.9660
circling to get best parameter----->epoch:15 hide_node:48 accuracy:0.9650
circling to get best parameter----->epoch:15 hide_node:49 accuracy:0.9655
circling to get best parameter----->epoch:10 hide_node:100 accuracy:0.9685
circling to get best parameter----->epoch:10 hide_node:200 accuracy:0.9724
circling to get best parameter----->epoch:10 hide_node:300 accuracy:0.9718
circling to get best parameter----->epoch:10 hide_node:1000 accuracy:0.9568

Tensorflow实现

import argparse

# Import data
from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf FLAGS = None def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME') def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME') def add_layer(inputs, in_size, out_size, activation_function=None):
# add a fully collected layer
Weights = weight_variable([in_size, out_size])
biases = bias_variable([out_size])
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs def main(_):
mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True) # reshape the input to have batch size, width, height, channel size
x = tf.placeholder(tf.float32, [None, 784])
x_image = tf.reshape(x, [-1, 28, 28, 1]) # 5*5 patch size, input channel is 1, output channel is 32
W_conv1 = weight_variable([5, 5, 1, 32]) # bias, same size with the output channel
b_conv1 = bias_variable([32]) # the first convolutional layer with a max pooling layer
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) #after pooling, we have a tensor with shape[-1, 14, 14, 32] # the weights and bias for the second layer, we will get 64 channels
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64]) # the second convolutional layer with a max pooling layer
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) # after pooling, we have a tensor with shape[-1, 7, 7, 64] # add a fully connected layer with 1024 neurons and use relu as the activation function
h_pool2_flat = tf.reshape(h_pool2, [-1,7*7*64])
h_fc1 = add_layer(h_pool2_flat, 7*7*64, 1024, tf.nn.relu) # we add dropout for the fully connected layer to avoid overfitting
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # finally, the output layer
y_conv = add_layer(h_fc1_drop, 1024, 10, None) # loss function and so on
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(logits=y_conv, labels=y_))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # start training, and we test our model every 100 steps
sess = tf.InteractiveSession()
sess.run(tf.initialize_all_variables())
for i in range(10000):
batch = mnist.train.next_batch(100)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0], y_: batch[1], keep_prob: 1.0})
test_accuracy = accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0})
print("step %d, training accuracy %g, test accuracy %g" % (i, train_accuracy, test_accuracy)) train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5}) if __name__ == '__main__':
parser = argparse.ArgumentParser() # modify the dir path to your own dataset
parser.add_argument('--data_dir', type=str, default='/tmp/mnist',
help='Directory for storing data')
FLAGS = parser.parse_args()
tf.app.run()

需要配置tensorflow和python3.+的运行环境

结果如下

step 0, training accuracy 0.06, test accuracy 0.0892
step 100, training accuracy 0.86, test accuracy 0.8692
step 200, training accuracy 0.97, test accuracy 0.9207
step 300, training accuracy 0.92, test accuracy 0.9403
step 400, training accuracy 0.95, test accuracy 0.9485
step 500, training accuracy 0.91, test accuracy 0.9522
step 600, training accuracy 0.97, test accuracy 0.9565
step 700, training accuracy 0.97, test accuracy 0.9622
step 800, training accuracy 0.96, test accuracy 0.9638
step 900, training accuracy 0.98, test accuracy 0.9687
step 1000, training accuracy 0.97, test accuracy 0.9703

有任何环境配置的问题请联系,欢迎指出错误

BP算法在minist数据集上的简单实现的更多相关文章

  1. (2) 用DPM(Deformable Part Model,voc-release4.01)算法在INRIA数据集上训练自己的人体检測模型

    步骤一,首先要使voc-release4.01目标检測部分的代码在windows系统下跑起来: 參考在window下执行DPM(deformable part models) -(检測demo部分) ...

  2. 如何高效的通过BP算法来训练CNN

    < Neural Networks Tricks of the Trade.2nd>这本书是收录了1998-2012年在NN上面的一些技巧.原理.算法性文章,对于初学者或者是正在学习NN的 ...

  3. 一文彻底搞懂BP算法:原理推导+数据演示+项目实战(上篇)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 反向传播算法(Backpropagation Algorithm, ...

  4. Backpropagation反向传播算法(BP算法)

    1.Summary: Apply the chain rule to compute the gradient of the loss function with respect to the inp ...

  5. 在Titanic数据集上应用AdaBoost元算法

    一.AdaBoost 元算法的基本原理 AdaBoost是adaptive boosting的缩写,就是自适应boosting.元算法是对于其他算法进行组合的一种方式. 而boosting是在从原始数 ...

  6. TersorflowTutorial_MNIST数据集上简单CNN实现

    MNIST数据集上简单CNN实现 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献 Tensorflow机器学习实战指南 源代码请点击下方链接欢迎加星 Tesorflow实现基于MNI ...

  7. MNIST数据集上卷积神经网络的简单实现(使用PyTorch)

    设计的CNN模型包括一个输入层,输入的是MNIST数据集中28*28*1的灰度图 两个卷积层, 第一层卷积层使用6个3*3的kernel进行filter,步长为1,填充1.这样得到的尺寸是(28+1* ...

  8. DNN的BP算法Python简单实现

    BP算法是神经网络的基础,也是最重要的部分.由于误差反向传播的过程中,可能会出现梯度消失或者爆炸,所以需要调整损失函数.在LSTM中,通过sigmoid来实现三个门来解决记忆问题,用tensorflo ...

  9. 史上最简单的排序算法?看起来却满是bug

    大家好,我是雨乐. 今天在搜论文的时候,偶然发现一篇文章,名为<Is this the simplest (and most surprising) sorting algorithm ever ...

随机推荐

  1. LeetCode OJ:Majority Element II(主元素II)

    Given an integer array of size n, find all elements that appear more than ⌊ n/3 ⌋ times. The algorit ...

  2. LeetCode OJ:Add Two Numbers (相加链表之数)

    You are given two linked lists representing two non-negative numbers. The digits are stored in rever ...

  3. React Native组件(一)组件的生命周期

    相关文章 React Native探索系列 前言 React Native有很多组件比如Image.ListView等等,想要合理的使用组件,首先要先了解组件的生命周期. 1.概述 无论你是开发And ...

  4. Hive——巧用transform处理复杂的字符串问题

    相比于Map-Reduce,Hive对数据的处理相对简单,但是Hive本身提供的函数,对于处理复杂的字符串问题,就显得不是很方便,此时,可以借助transform,引入外界的Python程序对字符串进 ...

  5. 9.详解引擎(InnoDB,MyISAM)的内存优化攻略?

    整理自互联网!! 本篇我们讲解内存优化. 注意:以下都是在MySQL目录下的my.ini文件中改写. 一.InnoDB内存优化 InnoDB用一块内存区域做I/O缓存池,该缓存池不仅用来缓存InnoD ...

  6. 【转载】GetAdaptersInfo函数在64位系统上返回ERROR_NOACCESS的有关问题

    From:http://www.educity.cn/wenda/351190.html GetAdaptersInfo函数在64位系统下返回ERROR_NOACCESS的问题 实际应用中一个程序在长 ...

  7. 【数据库】SQLite学习

    http://www.cnblogs.com/fnng/archive/2013/05/26/3099547.html

  8. 21天学通C++_Day3_Part1

    今天奔跑吧兄弟来杭电了,决定不去看,宅在科协继续啃(反正去了也看不到咯),继续继续,今天白天没课,希望可以更两个. 0.C风格字符串 在数组中间把某个字符替换成‘\0’并不会改变数组的长度,但是显示时 ...

  9. HihoCoder1622 : 有趣的子区间(预处理+组合数)

    有趣的子区间 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 如果一个区间[a, b]内恰好包含偶数个回文整数,我们就称[a, b]是有趣的区间. 例如[9, 12]包含 ...

  10. TIME_WAIT过多及解决

         最近用http_load做压测,跑出来一大串“Cannot assign requested address ”的错误,查了一下,是TIME_WAIT过多导致的.因为短时间内有太多连接,所以 ...