Q-learning

实例代码

 import numpy as np
import random
from environment import Env
from collections import defaultdict class QLearningAgent:
def __init__(self, actions):
# actions = [0, 1, 2, 3]
self.actions = actions
self.learning_rate = 0.01
self.discount_factor = 0.9
self.epsilon = 0.1
self.q_table = defaultdict(lambda: [0.0, 0.0, 0.0, 0.0])#待更新q表 # update q function with sample <s, a, r, s'>
def learn(self, state, action, reward, next_state):
current_q = self.q_table[state][action]
# using Bellman Optimality Equation to update q function
new_q = reward + self.discount_factor * max(self.q_table[next_state])
self.q_table[state][action] += self.learning_rate * (new_q - current_q)#更新公式,off-policy # get action for the state according to the q function table
# agent pick action of epsilon-greedy policy
def get_action(self, state):
#epsilon-greedy policy
if np.random.rand() < self.epsilon:
# take random action
action = np.random.choice(self.actions)
else:
# take action according to the q function table
state_action = self.q_table[state]
action = self.arg_max(state_action)
return action @staticmethod
def arg_max(state_action):
max_index_list = []
max_value = state_action[0]
for index, value in enumerate(state_action):
if value > max_value:
max_index_list.clear()
max_value = value
max_index_list.append(index)
elif value == max_value:
max_index_list.append(index)
return random.choice(max_index_list) if __name__ == "__main__":
env = Env()
agent = QLearningAgent(actions=list(range(env.n_actions))) for episode in range(1000):
state = env.reset() while True:
env.render() # take action and proceed one step in the environment
action = agent.get_action(str(state))
next_state, reward, done = env.step(action) # with sample <s,a,r,s'>, agent learns new q function
agent.learn(str(state), action, reward, str(next_state)) state = next_state
env.print_value_all(agent.q_table) # if episode ends, then break
if done:
break

增强学习--Q-leraning的更多相关文章

  1. 马里奥AI实现方式探索 ——神经网络+增强学习

    [TOC] 马里奥AI实现方式探索 --神经网络+增强学习 儿时我们都曾有过一个经典游戏的体验,就是马里奥(顶蘑菇^v^),这次里约奥运会闭幕式,日本作为2020年东京奥运会的东道主,安倍最后也已经典 ...

  2. 增强学习(三)----- MDP的动态规划解法

    上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...

  3. 增强学习(四) ----- 蒙特卡罗方法(Monte Carlo Methods)

    1. 蒙特卡罗方法的基本思想 蒙特卡罗方法又叫统计模拟方法,它使用随机数(或伪随机数)来解决计算的问题,是一类重要的数值计算方法.该方法的名字来源于世界著名的赌城蒙特卡罗,而蒙特卡罗方法正是以概率为基 ...

  4. 增强学习(Reinforcement Learning and Control)

    增强学习(Reinforcement Learning and Control)  [pdf版本]增强学习.pdf 在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y.之后对样本进行 ...

  5. 增强学习 | Q-Learning

    "价值不是由一次成功决定的,而是在长期的进取中体现" 上文介绍了描述能力更强的多臂赌博机模型,即通过多台机器的方式对环境变量建模,选择动作策略时考虑时序累积奖赏的影响.虽然多臂赌博 ...

  6. 常用增强学习实验环境 II (ViZDoom, Roboschool, TensorFlow Agents, ELF, Coach等) (转载)

    原文链接:http://blog.csdn.net/jinzhuojun/article/details/78508203 前段时间Nature上发表的升级版Alpha Go - AlphaGo Ze ...

  7. 增强学习训练AI玩游戏

    1.游戏简介 符号A为 AI Agent. 符号@为金币,AI Agent需要尽可能的接取. 符号* 为炸弹,AI Agent需要尽可能的躲避. 游戏下方一组数字含义如下: Bomb hit: 代表目 ...

  8. 【读书笔记】2_增强学习中的Q-Learning

    本文为Thomas Simonini增强学习系列文章笔记或读后感,原文可以直接跳转到medium系列文章. 主要概念为: Q-Learning,探讨其概念以及用Numpy实现 我们可以将二维游戏想象成 ...

  9. 转:增强学习(二)----- 马尔可夫决策过程MDP

    1. 马尔可夫模型的几类子模型 大家应该还记得马尔科夫链(Markov Chain),了解机器学习的也都知道隐马尔可夫模型(Hidden Markov Model,HMM).它们具有的一个共同性质就是 ...

  10. Multi-armed Bandit Problem与增强学习的联系

    选自<Reinforcement Learning: An Introduction>, version 2, 2016, Chapter2 https://webdocs.cs.ualb ...

随机推荐

  1. android 调试 native 程序的方法

    一.背景 首先说需求,这个需求非常常见,就是android上需要的一个功能,linux已经有开源代码而且非常稳定,希望能直接porting过去使用,这个程序是pure c 的代码,也就是说,跟andr ...

  2. Dancing Links [Kuangbin带你飞] 模版及题解

    学习资料: http://www.cnblogs.com/grenet/p/3145800.html http://blog.csdn.net/mu399/article/details/762786 ...

  3. 如何在Ubuntu 16.04安装的Git【转】

    转自:https://www.howtoing.com/how-to-install-git-on-ubuntu-16-04/ 介绍 现代软件开发中不可或缺的工具是某种版本控制系统. 版本控制系统允许 ...

  4. python基础===map和zip的用法

    >>> list1=[1,45,232,45,666,64] >>> list2=["ss","kein","to ...

  5. [ Openstack ] Openstack-Mitaka 高可用之 memcache

    目录 Openstack-Mitaka 高可用之 概述    Openstack-Mitaka 高可用之 环境初始化    Openstack-Mitaka 高可用之 Mariadb-Galera集群 ...

  6. [ MongoDB ] 副本集的搭建及测试

    Replica Sets  复制 (副本集) node1: 10.0.0.10node2: 10.0.0.11node3: 10.0.0.12 副本集结构图:

  7. ApplicationCommands 应用程序常见命令

    ApplicationCommands用于表示应用程序程序员经常遇到的常见命令,类似于ctrl+c 在WPF中,许多控件都自动集成了固有的命令集.比如文本框TextBox就提供了复制(Copy),粘贴 ...

  8. 获取mac地址和IP地址方式

    第一种 public class OperateMAC{ public static string GetMacByWMI() { string MacAddr = null; //Managemen ...

  9. Selenium2+python自动化68-html报告乱码问题【转载】

    前言 python2用HTMLTestRunner生成测试报告时,有中文输出情况会出现乱码,这个主要是编码格式不统一,改下编码格式就行. 下载地址:http://tungwaiyip.info/sof ...

  10. mysql之any,some all(zz)

    转载自:http://blog.csdn.net/netcy/article/details/8464503 ALL和ANY操作符的常见用法是结合一个相对比较操作符对一个数据列子查询的结果进行测试.它 ...