HDOJ 4903 The only survival
Something bad actually happen. The devil makes this kingdom's people infected by a disease called lolicon. Lolicon will take away people's life in silence.
Although z*p is died, his friend, y*wan is not a lolicon. Y*wan is the only one in the country who is immune of lolicon, because he like the adult one so much.
As this country is going to hell, y*wan want to save this country from lolicon, so he starts his journey.
You heard about it and want to help y*wan, but y*wan questioned your IQ, and give you a question, so you should solve it to prove your IQ is high enough.
The problem is about counting. How many undirected graphs satisfied the following constraints?
1. This graph is a complete graph of size n.
2. Every edge has integer cost from 1 to L.
3. The cost of the shortest path from 1 to n is k.
Can you solve it?
output the answer modulo 10^9+7
Input
The first line contains an integer T, denoting the number of the test cases.
For each test case, the first line contains 3 integers n,k,L.
T<=5 n,k<=12,L<=10^9.
Output
For each test case, output the answer in one line.
Sample Input
2
3 3 3
4 4 4
Sample Output
8
668 陈立杰大神出的题,想了想又写了写2h就过去了orz
题目大意就是给出n,k,L ,问有多少n个点的带标号的完全无向图,
满足1-n的最短路长度为k,且每条边的权值都>=1且<=L 。 (要不是上午ZHW点拨了几下我估计一晚上都做不出来hhh) 首先不能枚举最短路的构成,这样显然会挂掉,因为1-n可能会有很多条最短的路径; 然后考虑一下枚举每一个dis[i],代表1号节点到i号节点的最短路长度。
假设我们不用管枚举dis的时间花费,先关注一下如果dis都确定了的话如何更新答案。
先把dis从小到大排序,之后从后面的点向前面的每个节点连边(这样才能是完全图嘛。。)。
边权显然不是任意的,可以发现的是如果1到i(代表最短路长度从小到大排序后第i小点)
的最短路长度为dis[i]的话,必须满足:
1.对于所有的dis[j]<dis[i],
使得dis[j]+val(j,i)>=dis[i]
2.存在dis[j]<dis[i],
使得dis[j]+val(j,i)==dis[i]
满足上两个条件的方案数不难求,一个容斥就ojbk了。
然后再考虑dis[j]==dis[i]的点j,发现边权是多少都无所谓,所以都×L就行了。 但是可能会有点的dis>k,这可怎么办呢?
这样就设dis[i]==k(这里i!=n)的意思为1到i的最短路长度>=k,
那么我们统计这类节点的方案数就不用容斥减去了,直接乘上满足条件1的方案数就行了。 但是搜索出每个dis[i]的值是会TLE的,需要考虑一种更加高效的方法。 其实我们不必知道每个dis是多少,只需要知道对于1<=x<=k的每个x,dis[i]==x的i有多少个就行了。
这样我们改变搜索对象(实验证明这样搜索能到达的状态最多有10^5种,再乘上n^2的更新答案时间根本不虚),
中间计算的时候乘上组合数就行了(相当于算等于x的dis[i]分别对应原图中的哪些节点)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<algorithm>
#include<map>
#include<cstring>
#define ll long long
#define ha 1000000007
using namespace std;
ll n,k,L,T,ans;
ll C[][],jc[];
ll num[],cnt=;
ll ci[][]; inline void init(){
C[][]=jc[]=;
for(int i=;i<=;i++){
C[i][]=,jc[i]=jc[i-]*(ll)i%ha;
for(int j=;j<=i;j++){
C[i][j]=C[i-][j-]+C[i-][j];
if(C[i][j]>=ha) C[i][j]-=ha;
}
}
} inline ll calc(){
ll an=,rk1,rk2,fin=num[k];
num[k]=;
//先算num<k和num==k中的n的情况。
for(int i=;i<=k;i++) if(num[i]){
rk1=rk2=;
for(int j=;j<i;j++) if(num[j]){
rk1=rk1*ci[i-j-][num[j]];
rk2=rk2*ci[i-j][num[j]];
if(rk1>=ha) rk1-=rk1/ha*ha;
if(rk2>=ha) rk2-=rk2/ha*ha;
} rk1+=ha-rk2;
if(rk1>=ha) rk1-=ha; for(int j=;j<=num[i];j++){
an=an*rk1;
rk1=rk1*L;
if(an>=ha) an-=an/ha*ha;
if(rk1>=ha) rk1-=rk1/ha*ha;
}
} //再求num==k的其他点的方案数
num[k]=fin-;
if(num[k]){
rk1=;
for(int i=;i<k;i++) if(num[i]){
rk1=rk1*ci[k-i-][num[i]];
if(rk1>=ha) rk1-=rk1/ha*ha;
} for(int j=;j<=num[k];j++){
rk1=rk1*L;
if(rk1>=ha) rk1-=rk1/ha*ha;
an=an*rk1;
if(an>=ha) an-=an/ha*ha;
}
} return an;
} void dfs(int tmp,int lef,ll alr){
if(tmp==k-){
num[k]=lef+;
ans+=alr*calc()%ha;
if(ans>=ha) ans-=ha;
return;
} for(int u=;u<=lef;u++){
ll to=alr*C[lef][u]%ha;
num[tmp+]=u;
dfs(tmp+,lef-u,to);
}
} inline void solve(){
dfs(,n,);
} int main(){
init();
scanf("%lld",&T);
while(T--){
ans=; memset(num,,sizeof(num));
memset(ci,,sizeof(ci)); scanf("%lld%lld%lld",&n,&k,&L);
if(L<k){
puts("");
continue;
} for(int i=;i<=k;i++){
ci[i][]=;
for(int j=;j<=n;j++) ci[i][j]=ci[i][j-]*(L-i+ha)%ha;
} n-=,num[]=num[k]=,solve();
printf("%lld\n",ans);
} return ;
}
HDOJ 4903 The only survival的更多相关文章
- hdu 4903 The only survival
The only survival http://acm.hdu.edu.cn/showproblem.php?pid=4903 Time Limit: 40000/20000 MS (Java/Ot ...
- HDU.4903.The only survival(组合 计数)
题目链接 惊了 \(Description\) 给定\(n,k,L\),表示,有一张\(n\)个点的无向完全图,每条边的边权在\([1,L]\)之间.求有多少张无向完全图满足,\(1\)到\(n\)的 ...
- HDOJ 1009. Fat Mouse' Trade 贪心 结构体排序
FatMouse' Trade Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- HDOJ 2317. Nasty Hacks 模拟水题
Nasty Hacks Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Tota ...
- HDOJ 1326. Box of Bricks 纯水题
Box of Bricks Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- HDOJ 1004 Let the Balloon Rise
Problem Description Contest time again! How excited it is to see balloons floating around. But to te ...
- hdoj 1385Minimum Transport Cost
卧槽....最近刷的cf上有最短路,本来想拿这题复习一下.... 题意就是在输出最短路的情况下,经过每个节点会增加税收,另外要字典序输出,注意a到b和b到a的权值不同 然后就是处理字典序的问题,当松弛 ...
- (转)A Survival Guide to a PhD
Andrej Karpathy blog About Hacker's guide to Neural Networks A Survival Guide to a PhD Sep 7, 2016 T ...
- HDOJ(2056)&HDOJ(1086)
Rectangles HDOJ(2056) http://acm.hdu.edu.cn/showproblem.php?pid=2056 题目描述:给2条线段,分别构成2个矩形,求2个矩形相交面 ...
随机推荐
- BZOJ 3629 JLOI2014 聪明的燕姿 约数和+DFS
根据约数和公式来拆s,最后再把答案乘出来,我们发先这样的话递归层数不会太大每层枚举次数也不会太多,然而我们再来个剪枝就好了 #include<cstdio> #include<ios ...
- HDU 多校对抗赛第二场 1004 Game
Game Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...
- DOM操作的一个小坑
最近在苦读<JavaScript高级程序教程>,真不愧是前端圣经,学到了很多东西. nodeList.NameNodeMap.HTMLCollection这三个集合是动态的!每当文档发生变 ...
- Xcode5根控制器使用xib展示的步骤
#error:Xcode5根控制器使用xib展示,步骤 ⓵取消mainInterface ⓶右击file's owner对xib进行view-view连线,否则: Terminating app du ...
- I wrote a JSONHelper extension
using System; using System.Collections.Generic; using System.Linq; using System.Text; using Newtonso ...
- Oop分析方法
为了实现Oop,这个我已经在一个前端的js项目中实现了Oop,过后总结:对于js这种动态语言,可以在运行时动态组件对象的属性和方法这种,解释型的语言来讲,真的是OOP,如果不存在关系数据库,仅仅是从后 ...
- sort函数_C++
C++的STL库里有一个 sort 函数,它就是随机化快速排序,速度比快速排序还快,因为它克服了逆序时被卡成O(n2)的情况 想要使用 sort 首先要在头文件里申明 #include<algo ...
- [Leetcode Week9]Word Break II
Word Break II 题解 题目来源:https://leetcode.com/problems/word-break-ii/description/ Description Given a n ...
- HDU1143(3*N的地板铺1*2的砖)
Tri Tiling Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- linux下命令源码
一般来说,不同的命令可能隶属于不同的软件包,这样就没有一个地方会有所有命令的源代码.(命令的个数也会与你所安装的软件包有关)但是,一些常用的命令,例如basename cat chgrp chmod ...