[洛谷P3377]【模板】左偏树(可并堆)
题目大意:有$n$个数,$m$个操作:
- $1\;x\;y:$把第$x$个数和第$y$个数所在的小根堆合并
- $2\;x:$输出第$x$个数所在的堆的最小值
题解:左偏树,保证每个的左儿子的距离大于右儿子(距离的定义是该点到其子树中最近的叶子节点的距离)
卡点:无
C++ Code:
#include <cstdio>
#include <algorithm>
#define maxn 100010
int n, m;
int val[maxn];
int fa[maxn], lc[maxn], rc[maxn], dis[maxn];
inline int find(int x) {while (fa[x]) x = fa[x]; return x;}
int merge(int x, int y) {
if (!x || !y) return x | y;
if ((val[x] > val[y]) || (val[x] == val[y] && x > y)) std::swap(x, y);
rc[x] = merge(rc[x], y); fa[rc[x]] = x;
if (dis[rc[x]] > dis[lc[x]]) std::swap(lc[x], rc[x]);
dis[x] = dis[rc[x]] + 1;
return x;
}
int pop(int x) {
fa[lc[x]] = fa[rc[x]] = 0;
merge(lc[x], rc[x]);
int tmp = val[x]; val[x] = -1;
return tmp;
}
int main() {
scanf("%d%d", &n, &m); dis[0] = -1;
for (int i = 1; i <= n; i++) scanf("%d", val + i);
for (int i = 1; i <= m; i++) {
int op, x, y;
scanf("%d%d", &op, &x);
if (op == 1) {
scanf("%d", &y);
int __x = find(x), __y = find(y);
if (~val[x] && ~val[y] && __x != __y) merge(__x, __y);
} else {
if (~val[x]) printf("%d\n", pop(find(x)));
else puts("-1");
}
}
return 0;
}
[洛谷P3377]【模板】左偏树(可并堆)的更多相关文章
- 洛谷 P3377 模板左偏树
题目:https://www.luogu.org/problemnew/show/P3377 左偏树的模板题: 加深了我对空 merge 的理解: 结构体的编号就是原序列的位置. 代码如下: #inc ...
- 洛谷 - P1552 - 派遣 - 左偏树 - 并查集
首先把这个树建出来,然后每一次操作,只能选中一棵子树.对于树根,他的领导力水平是确定的,然后他更新答案的情况就是把他子树内薪水最少的若干个弄出来. 问题在于怎么知道一棵子树内薪水最少的若干个分别是谁. ...
- [note]左偏树(可并堆)
左偏树(可并堆)https://www.luogu.org/problemnew/show/P3377 题目描述 一开始有N个小根堆,每个堆包含且仅包含一个数.接下来需要支持两种操作: 操作1: 1 ...
- bzoj2809 [Apio2012]dispatching——左偏树(可并堆)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2809 思路有点暴力和贪心,就是 dfs 枚举每个点作为管理者: 当然它的子树中派遣出去的忍者 ...
- [luogu3377][左偏树(可并堆)]
题目链接 思路 左偏树的模板题,参考左偏树学习笔记 对于这道题我是用一个并查集维护出了哪些点是在同一棵树上,也可以直接log的往上跳寻找根节点 代码 #include<cstdio> #i ...
- BZOJ1455 罗马游戏 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1455 题意概括 n个人,2种操作. 一种是合并两个人团,一种是杀死某一个人团的最弱的人. 题解 左 ...
- HDU3031 To Be Or Not To Be 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - HDU3031 题意概括 喜羊羊和灰太狼要比赛. 有R次比赛. 对于每次比赛,首先输入n,m,n表示喜羊羊和灰 ...
- HDU5818 Joint Stacks 左偏树,可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - HDU5818 题意概括 有两个栈,有3种操作. 第一种是往其中一个栈加入一个数: 第二种是取出其中一个栈的顶 ...
- BZOJ2333 [SCOI2011]棘手的操作 堆 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2333 题意概括 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i ...
- BZOJ 4003: [JLOI2015]城池攻占 左偏树 可并堆
https://www.lydsy.com/JudgeOnline/problem.php?id=4003 感觉就是……普通的堆啊(暴论),因为这个堆是通过递归往右堆里加一个新堆或者新节点的,所以要始 ...
随机推荐
- 07 json与os模块(进阶)
json和os模块 阶段一 .数据交换 1.json的基本介绍 JSON全名是JavaScript Object Notation(即:JavaScript对象标记)它是JavaScript的子集. ...
- 量化交易之 tushare
作为一名老股民,我对金融市场一直都保持长期的关注. 最近我大量接触量化交易相关的一切,发现市场力量还是蛮强大的,6年前的很多设想现在已经彻底变成现实,不得不承认市场从来不会等任何人.想好就要马上行动, ...
- [ACM] POJ 2409 Let it Bead (Polya计数)
参考:https://blog.csdn.net/sr_19930829/article/details/38108871 #include <iostream> #include < ...
- JENKINS系统的安装部署
JENKINS 安装使用文档 简介 Jenkins是一个功能强大的应用程序,允许持续集成和持续交付项目,无论用的是什么平台.这是一个免费的源代码,可以处理任何类型的构建或持续集成,集成Jenkins可 ...
- 初步学习pg_control文件之五
接前文 初步学习pg_control文件之四,继续看何时出现 DB_IN_CRASH_RECOVERY: 看下面代码就比较清楚了:如果对 InArchiveRecovery 判断值为假,而且 读取出 ...
- P1078 文化之旅
P1078 文化之旅 题目描述 有一位使者要游历各国,他每到一个国家,都能学到一种文化,但他不愿意学习任何一 种文化超过一次(即如果他学习了某种文化,则他就不能到达其他有这种文化的国家).不 同的国家 ...
- Python3: 对两个字符串进行匹配
Python里一共有三种字符串匹配方式,用于判断一个字符串是否包含另一个字符串.比如判断字符串“HelloWorld”中是否包含“World”: def stringCompare(str1, str ...
- CDH-5.9.2整合spark2
1.编写目的:由于cdh-5.9.2自带spark版本是spark1.6,现需要测试spark2新特性,需要整合spark2, 且spark1.x和spark2.x可以同时存在于cdh中,无需先删除s ...
- asp.net MVC+easyUI 文件上传
前言:公司前端都是index页面引用js,剩下的添加...都是html页.加大操作难度5555,所以就是主页面操作子页面上传.效果如下: 1,前端html页代码如下 .其中请注意,form中encty ...
- 解析HTML利器AngleSharp介绍
解析HTML利器AngleSharp介绍 AngleSharp是基于.NET(C#)开发的专门为解析xHTML源码的DLL组件. 项目地址:https://github.com/FlorianRapp ...