参考:Preparing Inputs

1、PASCAL VOC数据集

数据集介绍

PASCAL Visual Object Classes 是一个图像物体识别竞赛,用来从真实世界的图像中识别特定对象物体,共包括 4 大类 20 小类物体的识别。其类别信息如下。 Person: person Animal: bird, cat, cow, dog, horse, sheep Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor

为了更加方便以及规范化,在research下面新建一个date文件夹用于存放各种数据集

# From tensorflow/models/research/
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
tar -xvf VOCtrainval_11-May-2012.tar
python object_detection/dataset_tools/create_pascal_tf_record.py \
  --label_map_path=object_detection/data/pascal_label_map.pbtxt \
  --data_dir=date/VOCdevkit \ # 注意修改路径
  --year=VOC2012 \ # 如果下载的是07的则选用07
  --set=train \
  --output_path=date/VOCdevkit/pascal_train.record# 注意修改路径
python object_detection/dataset_tools/create_pascal_tf_record.py \ 
  --label_map_path=object_detection/data/pascal_label_map.pbtxt \
  --data_dir=date/VOCdevkit \
  --year=VOC2012 \
  --set=val \
  --output_path=date/VOCdevkit/pascal_val.record
正确姿势:

TF-record结果集

2、Oxford-IIIT Pet数据集

数据集介绍

The Oxford-IIIT Pet Dataset是一个宠物图像数据集,包含37种宠物,每种宠物200张左右宠物图片,并同时包含宠物轮廓标注信息。

下载数据,转化为TF-record

wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/images.tar.gz
wget http://www.robots.ox.ac.uk/~vgg/data/pets/data/annotations.tar.gz
tar -xvf annotations.tar.gz
tar -xvf images.tar.gz
python object_detection/dataset_tools/create_pet_tf_record.py \
--label_map_path=object_detection/data/pet_label_map.pbtxt \
--data_dir=`pwd`/date/Oxford-IIIT \
--output_dir=`pwd`/date/Oxford-IIIT

正确姿势:

TF-record结果集

3、训练自己数据集

准备图片和XML文件,xml文件可以用labelImg这个工具进行标注

3.1 按Oxford-IIIT Pet数据集形式生成

复制create_pet_tf_record.py并命名为create_pet_tf_record_sfz_hm.py

label_map_path=/data/zxx/models/research/date/sfz_fyj/sfz_hm_label_map.pbtxt
python object_detection/dataset_tools/create_pet_tf_record_sfz_hm.py \
--label_map_path=${label_map_path} \
--data_dir=`pwd`date/sfz_fyj \
--output_dir=`pwd`date/sfz_fyj

报错:tensorflow.python.framework.errors_impl.NotFoundError: /data/zxx/models/researchdate/sfz_fyj/annotations/trainval.txt; No such file or directory

查看了下sfz_fyj里面确实没有annotation  这个文件夹和annotations/trainval.txt,原因在于我们的数据文件格式未满足create_pet_tf_record_sfz_hm.py的要求

在annotations中除了xmls文件外,还有其余5个文件,

trimaps:数据集中每个图像的Trimap注释,像素注释:1:前景2:背景3:未分类

list.txt:Image CLASS-ID SPECIES BREED ID,类别ID:1-37类;动物种类ID:如猫,狗;BREED ID:1-25:猫1:12:狗

trainval.txt:文件描述了论文中使用的分裂,但是test.txt鼓励你尝试随机分割

所以上面是提供了两种素材分类的方式,一种是论文采用的,一种是自己随机分配

需要自己生成

参考1:http://androidkt.com/train-object-detection/

执行试了下,并不靠谱,弃用,不过还是保留在这,大神懂的,可以指点下下面代码是什么原理。

ls image | grep ".jpg" | sed s/.jpg// > annotations/trainval.txt

参考2:https://github.com/EddyGao/make_VOC2007/blob/master/

 import os
import random trainval_percent = 0.66
train_percent = 0.5
xmlfilepath = 'annotations/xmls'
txtsavepath = 'annotations'
total_xml = os.listdir(xmlfilepath) num=len(total_xml)
list=range(num)
tv=int(num*trainval_percent)
tr=int(tv*train_percent)
trainval= random.sample(list,tv)
train=random.sample(trainval,tr) ftrainval = open('annotations/trainval.txt', 'w')
ftest = open('annotations/test.txt', 'w')
ftrain = open('annotations/train.txt', 'w')
fval = open('annotations/val.txt', 'w') for i in list:
name=total_xml[i][:-4]+'\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name) ftrainval.close()
ftrain.close()
fval.close()
ftest .close()

make_data_txt.py

结果:

执行:

label_map_path=/data/zxx/models/research/date/sfz_fyj/sfz_hm_label_map.pbtxt
python object_detection/dataset_tools/create_pet_tf_record_sfz_hm.py \
--label_map_path=${label_map_path} \
--data_dir=`pwd`/date/sfz_fyj/ \
--output_dir=`pwd`/date/sfz_fyj/

3.2 按PASCAL数据集形式

参考:https://blog.csdn.net/Int93/article/details/79064428

三部曲:

import os
import glob
import pandas as pd
import xml.etree.ElementTree as ET def xml_to_csv(path):
xml_list = []
for xml_file in glob.glob(path + '/*.xml'):
tree = ET.parse(xml_file)
root = tree.getroot()
for member in root.findall('object'):
value = (root.find('filename').text,
int(root.find('size')[0].text),
int(root.find('size')[1].text),
member[0].text,
int(member[4][0].text),
int(member[4][1].text),
int(member[4][2].text),
int(member[4][3].text)
)
xml_list.append(value)
column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']
xml_df = pd.DataFrame(xml_list, columns=column_name)
return xml_df def main():
image_path = os.path.join(os.getcwd(), 'path')
xml_df = xml_to_csv(image_path)
xml_df.to_csv('保存路径', index=None)
print('Successfully converted xml to csv.') main()
#!/usr/bin/env python
# coding: utf-8 # In[1]: import numpy as np
import pandas as pd
np.random.seed(1) # In[2]: full_labels = pd.read_csv('pg13_kg_0702/pg13_kg_labels.csv') # In[3]: # full_labels.head() # In[4]: # grouped = full_labels.groupby('filename') # In[5]: # grouped.apply(lambda x: len(x)).value_counts() # ### split each file into a group in a list # In[6]: gb = full_labels.groupby('filename') # In[7]: grouped_list = [gb.get_group(x) for x in gb.groups] # In[8]: # len(grouped_list) # In[9]: train_index = np.random.choice(len(grouped_list), size=3168, replace=False)
test_index = np.setdiff1d(list(range(1357)), train_index) # In[10]: # len(train_index), len(test_index) # In[11]: # take first 200 files
train = pd.concat([grouped_list[i] for i in train_index])
test = pd.concat([grouped_list[i] for i in test_index]) # In[12]: len(train), len(test) # In[13]: train.to_csv('pg13_kg_0702/pg13_kg_train_labels.csv', index=None)
test.to_csv('pg13_kg_0702/pg13_kg_test_labels.csv', index=None) # In[ ]:

split_labels

"""
Usage:
# From tensorflow/models/
# Create train data:
python generate_tfrecord.py --csv_input=data/train_labels.csv --output_path=train.record # Create test data:
python generate_tfrecord.py --csv_input=data/test_labels.csv --output_path=test.record
"""
from __future__ import division
from __future__ import print_function
from __future__ import absolute_import import os
import io
import pandas as pd
import tensorflow as tf from PIL import Image
from object_detection.utils import dataset_util
from collections import namedtuple, OrderedDict flags = tf.app.flags
flags.DEFINE_string('csv_input', '', 'Path to the CSV input')
flags.DEFINE_string('output_path', '', 'Path to output TFRecord')
flags.DEFINE_string('image_dir', 'images', 'Path to images')
FLAGS = flags.FLAGS # TO-DO replace this with label map
def class_text_to_int(row_label):
if row_label == 'left':
return 1
else:
return 0 # None 修改为0 def split(df, group):
data = namedtuple('data', ['filename', 'object'])
gb = df.groupby(group)
return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)] def create_tf_example(group, path):
with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid:
encoded_jpg = fid.read()
encoded_jpg_io = io.BytesIO(encoded_jpg)
image = Image.open(encoded_jpg_io)
width, height = image.size filename = group.filename.encode('utf8')
image_format = b'jpg'
xmins = []
xmaxs = []
ymins = []
ymaxs = []
classes_text = []
classes = [] for index, row in group.object.iterrows():
xmins.append(row['xmin'] / width)
xmaxs.append(row['xmax'] / width)
ymins.append(row['ymin'] / height)
ymaxs.append(row['ymax'] / height)
classes_text.append(row['class'].encode('utf8'))
classes.append(class_text_to_int(row['class'])) tf_example = tf.train.Example(features=tf.train.Features(feature={
'image/height': dataset_util.int64_feature(height),
'image/width': dataset_util.int64_feature(width),
'image/filename': dataset_util.bytes_feature(filename),
'image/source_id': dataset_util.bytes_feature(filename),
'image/encoded': dataset_util.bytes_feature(encoded_jpg),
'image/format': dataset_util.bytes_feature(image_format),
'image/object/bbox/xmin': dataset_util.float_list_feature(xmins),
'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs),
'image/object/bbox/ymin': dataset_util.float_list_feature(ymins),
'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs),
'image/object/class/text': dataset_util.bytes_list_feature(classes_text),
'image/object/class/label': dataset_util.int64_list_feature(classes),
}))
return tf_example def main(_):
writer = tf.python_io.TFRecordWriter(FLAGS.output_path)
path = os.path.join(FLAGS.image_dir)
examples = pd.read_csv(FLAGS.csv_input)
grouped = split(examples, 'filename')
for group in grouped:
tf_example = create_tf_example(group, path)
writer.write(tf_example.SerializeToString()) writer.close()
output_path = os.path.join(os.getcwd(), FLAGS.output_path)
print('Successfully created the TFRecords: {}'.format(output_path)) if __name__ == '__main__':
tf.app.run()

gennerate_tfrecord

【Tensorflow】 Object_detection之准备数据生成TFRecord的更多相关文章

  1. Tensorflow 处理libsvm格式数据生成TFRecord (parse libsvm data to TFRecord)

    #写libsvm格式 数据 write libsvm     #!/usr/bin/env python #coding=gbk # ================================= ...

  2. 3. Tensorflow生成TFRecord

    1. Tensorflow高效流水线Pipeline 2. Tensorflow的数据处理中的Dataset和Iterator 3. Tensorflow生成TFRecord 4. Tensorflo ...

  3. Tensorflow Object_Detection 目标检测 笔记

    Tensorflow models Code:https://github.com/tensorflow/models 编写时间:2017.7 记录在使用Object_Detection 中遇到的问题 ...

  4. Tensorflow细节-P170-图像数据预处理

    由于6.5中提出的TFRecord非常复杂,可扩展性差,所以本节换一种方式 import tensorflow as tf from tensorflow.examples.tutorials.mni ...

  5. 谷歌BERT预训练源码解析(一):训练数据生成

    目录预训练源码结构简介输入输出源码解析参数主函数创建训练实例下一句预测&实例生成随机遮蔽输出结果一览预训练源码结构简介关于BERT,简单来说,它是一个基于Transformer架构,结合遮蔽词 ...

  6. 生成TFRecord文件完整代码实例

    import os import json def get_annotation_dict(input_folder_path, word2number_dict): label_dict = {} ...

  7. 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据

    1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...

  8. TensorFlow练习7: 基于RNN生成古诗词

      http://blog.topspeedsnail.com/archives/10542 主题 TensorFlow RNN不像传统的神经网络-它们的输出输出是固定的,而RNN允许我们输入输出向量 ...

  9. Tensorflow学习教程------读取数据、建立网络、训练模型,小巧而完整的代码示例

    紧接上篇Tensorflow学习教程------tfrecords数据格式生成与读取,本篇将数据读取.建立网络以及模型训练整理成一个小样例,完整代码如下. #coding:utf-8 import t ...

随机推荐

  1. java IO Nio 文件拷贝工具类Files

    public static void main(String[] args) throws Exception { Files.copy(Paths.get("file/text.txt&q ...

  2. leetcode Submission Details

    代码: #include<iostream> #include<vector> using namespace std; struct ListNode { int val; ...

  3. POJ3259 Wormholes(SPFA判断负环)

    Description While exploring his many farms, Farmer John has discovered a number of amazing wormholes ...

  4. 从后台传select的值

    var option = ''; $.each(data, function (i, v) { option += "<option value='" + i + " ...

  5. markdown syntax

    Markdown 语法 转载自https://zh.mweb.im/markdown.html 首先应该了解的 每一个 Markdwon 使用者都应该了解的,是 Markdown 最基本的版本,也就是 ...

  6. http服务 WCF、Web API、Web service、WCF REST之间的区别

      http服务 WCF.Web API.Web service.WCF REST之间的区别 在.net平台下,有大量的技术让你创建一个HTTP服务,像Web Service,WCF,现在又出了Web ...

  7. CSR(certSigningRequest文件)导出步骤

    1.打开钥匙串访问 2.请求证书 3.电子邮箱.保存位置 电子邮箱其实是可以乱填的,但是为了规范,还是填注册时用的邮箱吧. 4.保存到桌面 5.结果

  8. 第七篇 Python面向对象

    类是对一群具有相同特征或者行为的事物的一个统称,是抽象的,不能直接使用,特征被称为属性,行为被称为方法,类就相当于制造飞机时的图纸,是一个模板,是负责创建对象的. 对象是由类创建出来的一个具体存在,可 ...

  9. 我的java问题排查工具单

    前言 平时的工作中经常碰到很多疑难问题的处理,在解决问题的同时,有一些工具起到了相当大的作用,在此书写下来,一是作为笔记,可以让自己后续忘记了可快速翻阅,二是分享,希望看到此文的同学们可以拿出自己日常 ...

  10. php 中 include 与 require 的区别

    以下内容转自:https://blog.csdn.net/hsd2012/article/details/51089785 网上太多关于php中include与require区别.其实说的都是经不起验 ...