LeetCode 480. Sliding Window Median
原题链接在这里:https://leetcode.com/problems/sliding-window-median/?tab=Description
题目:
Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.
Examples:
[2,3,4] , the median is 3
[2,3], the median is (2 + 3) / 2 = 2.5
Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Your job is to output the median array for each window in the original array.
For example,
Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.
Window position Median
--------------- -----
[1 3 -1] -3 5 3 6 7 1
1 [3 -1 -3] 5 3 6 7 -1
1 3 [-1 -3 5] 3 6 7 -1
1 3 -1 [-3 5 3] 6 7 3
1 3 -1 -3 [5 3 6] 7 5
1 3 -1 -3 5 [3 6 7] 6
Therefore, return the median sliding window as [1,-1,-1,3,5,6].
Note:
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.
题解:
使用minHeap和maxHeap来维护median. 为了方便,这里始终保持minHeap.size() == maxHeap.size() 或 minHeap.size() = maxHeap.size()+1.
所以最开始两个heap都为空时,加到minHeap中.
取median时若size相同就两边peek求和除以2. 若size不同,那么肯定minHeap size大, minHeap peek下就是median.
remove时,看要remove的数nums[i-k], 若比median小,从maxHeap中remove. 不然从minHeap中remove.
Note: 两遍peek求和时注意overflow.
Remove时如果出现小数, 多半会从小的这一侧remove, 也就是maxHeap中remove. 所以添加时应该尽量向大的这一侧添加. 但添加时检测要用!maxHeap.isEmpty()&&maxHeap.peek()>nums[i]限制小的一侧添加, 而不用minHeap.isEmpty() || minHeap.peek()<nums[i]胡乱往大的一侧添加. 因为有可能minHeap刚才经过remove已经空了, 若出现个很小的数就错误的加进了minHeap中.
Time Complexity: O(nk), n = nums.length. 对于minHeap 和 maxHeap来说每个元素add, remove O(1)次. remove(target) takes O(k).
Space: O(k).
AC java:
public class Solution {
public double[] medianSlidingWindow(int[] nums, int k) {
if(nums == null || nums.length == 0 || k <= 0){
return new double[0];
}
PriorityQueue<Integer> minHeap = new PriorityQueue<Integer>();
PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer>(Collections.reverseOrder());
int len = nums.length;
double [] res = new double[len-k+1];
for(int i = 0; i<=len; i++){
if(i>=k){
if(minHeap.size() == maxHeap.size()){
res[i-k] = ((double)minHeap.peek() + (double)maxHeap.peek())/2.0;
}else{
res[i-k] = minHeap.peek();
}
if(nums[i-k] < res[i-k]){
maxHeap.remove(nums[i-k]);
}else{
minHeap.remove(nums[i-k]);
}
}
if(i<len){
if(!maxHeap.isEmpty() && maxHeap.peek()>nums[i]){
maxHeap.offer(nums[i]);
}else{
minHeap.offer(nums[i]);
}
while(maxHeap.size() > minHeap.size()){
minHeap.offer(maxHeap.poll());
}
while(minHeap.size() - maxHeap.size() > 1){
maxHeap.offer(minHeap.poll());
}
}
}
return res;
}
}
类似Find Median from Data Stream.
LeetCode 480. Sliding Window Median的更多相关文章
- 480 Sliding Window Median 滑动窗口中位数
详见:https://leetcode.com/problems/sliding-window-median/description/ C++: class Solution { public: ve ...
- 【LeetCode】480. 滑动窗口中位数 Sliding Window Median(C++)
作者: 负雪明烛 id: fuxuemingzhu 公众号: 每日算法题 本文关键词:LeetCode,力扣,算法,算法题,滑动窗口,中位数,multiset,刷题群 目录 题目描述 题目大意 解题方 ...
- [LeetCode] Sliding Window Median 滑动窗口中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- Leetcode: Sliding Window Median
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- Sliding Window Median LT480
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- [LeetCode] 239. Sliding Window Maximum 滑动窗口最大值
Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...
- LeetCode题解-----Sliding Window Maximum
题目描述: Given an array nums, there is a sliding window of size k which is moving from the very left of ...
- [leetcode]239. Sliding Window Maximum滑动窗口最大值
Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...
- 滑动窗口的中位数 · Sliding Window Median
[抄题]: 给定一个包含 n 个整数的数组,和一个大小为 k 的滑动窗口,从左到右在数组中滑动这个窗口,找到数组中每个窗口内的中位数.(如果数组个数是偶数,则在该窗口排序数字后,返回第 N/2 个数字 ...
随机推荐
- HashTable的使用,扑克牌发牌游戏
l 场景 主要实现以下功能: 1. 首先给扑克牌中每张牌设定一个编号,下面算法实现的编号规则如下: 红桃按照从小到大依次为:1-13 方块按照从小到大依次为:14-26 黑桃按 ...
- DNS 主从同步配置
DNS 主从同步配置 主从同步:主每次修改配置文件需要修改一下序列号,主从同步主要 看序列号. 从DNS:从是可以单独修改,主从不会报错.但从修改后,主端同步给从后 从端修改数据会丢失 主从原理:从会 ...
- 13.常见模块re-正则模块
1.正则 正则表达式是计算机科学的一个概念,正则表通常被用来检索.替换那些符合某个模式(规则)的文本.也就是说使用正则表达式可以在字符串中匹配出你需要的字符或者字符串,甚至可以替换你不需要的字符或者字 ...
- FTH: (7156): *** Fault tolerant heap shim applied to current process. This is usually due to previous crashes. ***
这两天在Qtcreator上编译程序的时候莫名其妙的出现了FTH: (7156): *** Fault tolerant heap shim applied to current process. T ...
- 获取蓝牙mac地址
http://macpu.github.io/2015/11/12/iOS%E5%A6%82%E4%BD%95%E8%8E%B7%E5%8F%96%E8%93%9D%E7%89%99Mac%E5%9C ...
- nginx面试要点
首先列出一些面试题目包括nginx和redis的. 1..nginx 框架是怎样的 2. nginx负载均衡的算法怎么实现的,懵逼,说没看过 . nginx 的 upstream目前支持 4 种方式 ...
- RabbitMQ死信队列
关于RabbitMQ死信队列 死信队列 听上去像 消息“死”了 其实也有点这个意思,死信队列 是 当消息在一个队列 因为下列原因: 消息被拒绝(basic.reject/ basic.nac ...
- springcloud-搭建服务注册中心
创建服务注册中心 1.创建一个springboot 命名为eureka-server 1)添加Eureka依赖 pom.xml <?xml version="1.0" enc ...
- js,java,ajax实现跨域访问及其原理
http://blog.csdn.net/saytime/article/details/51540876 这篇文章对跨域访问做了较为细致得分析,我这里做下简单总结 1.实现跨域访问原理: 浏览器由于 ...
- 到底EJB是什么
到底EJB是什么 到底EJB是什么?被口口相传的神神秘秘的,百度一番,总觉得没有讲清楚的,仍觉得一头雾水.百度了很久,也从网络的文章的只言片语中,渐渐有了头绪. 用通俗话说,EJB就是:" ...