原题链接在这里:https://leetcode.com/problems/sliding-window-median/?tab=Description

题目:

Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.

Examples:

[2,3,4] , the median is 3

[2,3], the median is (2 + 3) / 2 = 2.5

Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Your job is to output the median array for each window in the original array.

For example,
Given nums = [1,3,-1,-3,5,3,6,7], and k = 3.

Window position                Median
--------------- -----
[1 3 -1] -3 5 3 6 7 1
1 [3 -1 -3] 5 3 6 7 -1
1 3 [-1 -3 5] 3 6 7 -1
1 3 -1 [-3 5 3] 6 7 3
1 3 -1 -3 [5 3 6] 7 5
1 3 -1 -3 5 [3 6 7] 6

Therefore, return the median sliding window as [1,-1,-1,3,5,6].

Note: 
You may assume k is always valid, ie: 1 ≤ k ≤ input array's size for non-empty array.

题解:

使用minHeap和maxHeap来维护median. 为了方便,这里始终保持minHeap.size() == maxHeap.size() 或 minHeap.size() = maxHeap.size()+1.

所以最开始两个heap都为空时,加到minHeap中.

取median时若size相同就两边peek求和除以2. 若size不同,那么肯定minHeap size大, minHeap peek下就是median.

remove时,看要remove的数nums[i-k], 若比median小,从maxHeap中remove. 不然从minHeap中remove.

Note: 两遍peek求和时注意overflow.

Remove时如果出现小数, 多半会从小的这一侧remove, 也就是maxHeap中remove. 所以添加时应该尽量向大的这一侧添加. 但添加时检测要用!maxHeap.isEmpty()&&maxHeap.peek()>nums[i]限制小的一侧添加, 而不用minHeap.isEmpty() || minHeap.peek()<nums[i]胡乱往大的一侧添加. 因为有可能minHeap刚才经过remove已经空了, 若出现个很小的数就错误的加进了minHeap中.

Time Complexity: O(nk), n = nums.length. 对于minHeap 和 maxHeap来说每个元素add, remove O(1)次. remove(target) takes O(k).

Space: O(k).

AC java:

 public class Solution {
public double[] medianSlidingWindow(int[] nums, int k) {
if(nums == null || nums.length == 0 || k <= 0){
return new double[0];
} PriorityQueue<Integer> minHeap = new PriorityQueue<Integer>();
PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer>(Collections.reverseOrder()); int len = nums.length;
double [] res = new double[len-k+1];
for(int i = 0; i<=len; i++){
if(i>=k){
if(minHeap.size() == maxHeap.size()){
res[i-k] = ((double)minHeap.peek() + (double)maxHeap.peek())/2.0;
}else{
res[i-k] = minHeap.peek();
}
if(nums[i-k] < res[i-k]){
maxHeap.remove(nums[i-k]);
}else{
minHeap.remove(nums[i-k]);
}
}
if(i<len){
if(!maxHeap.isEmpty() && maxHeap.peek()>nums[i]){
maxHeap.offer(nums[i]);
}else{
minHeap.offer(nums[i]);
}
while(maxHeap.size() > minHeap.size()){
minHeap.offer(maxHeap.poll());
}
while(minHeap.size() - maxHeap.size() > 1){
maxHeap.offer(minHeap.poll());
}
}
}
return res;
}
}

类似Find Median from Data Stream.

LeetCode 480. Sliding Window Median的更多相关文章

  1. 480 Sliding Window Median 滑动窗口中位数

    详见:https://leetcode.com/problems/sliding-window-median/description/ C++: class Solution { public: ve ...

  2. 【LeetCode】480. 滑动窗口中位数 Sliding Window Median(C++)

    作者: 负雪明烛 id: fuxuemingzhu 公众号: 每日算法题 本文关键词:LeetCode,力扣,算法,算法题,滑动窗口,中位数,multiset,刷题群 目录 题目描述 题目大意 解题方 ...

  3. [LeetCode] Sliding Window Median 滑动窗口中位数

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  4. Leetcode: Sliding Window Median

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  5. Sliding Window Median LT480

    Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...

  6. [LeetCode] 239. Sliding Window Maximum 滑动窗口最大值

    Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...

  7. LeetCode题解-----Sliding Window Maximum

    题目描述: Given an array nums, there is a sliding window of size k which is moving from the very left of ...

  8. [leetcode]239. Sliding Window Maximum滑动窗口最大值

    Given an array nums, there is a sliding window of size k which is moving from the very left of the a ...

  9. 滑动窗口的中位数 · Sliding Window Median

    [抄题]: 给定一个包含 n 个整数的数组,和一个大小为 k 的滑动窗口,从左到右在数组中滑动这个窗口,找到数组中每个窗口内的中位数.(如果数组个数是偶数,则在该窗口排序数字后,返回第 N/2 个数字 ...

随机推荐

  1. PHP生成缩略图,控制图片质量,支持.png .jpg .gif

    namespace common\components; class ResizeImageHelper { public $type;//图片类型 public $width;//实际宽度 publ ...

  2. Loadrunner之脚本篇——事务函数

    1.事务的开始和结束名称需要相同 lr_start_transaction(“transaction_name”); …//事务处理 lr_end_transaction(“transaction_n ...

  3. Raspberry Pi开发之旅-实现云平台监控

    一.基本设置 1 sudo raspi-config 移动到第五项“Enable Camera”,回车进入,按tab键切换到“Enable”回车确认.回到主菜单,tab键切换到“Finish”回车确认 ...

  4. Redis之数据存储结构

    今天去中关村软件园面试,被问到:你做项目用到的Redis处理数据用的什么结构?顿时石化,”用到的结构,不就是key-value嘛,还有什么结构?“.面试官说:“平时除了工作,要加强学习,下面的面试我觉 ...

  5. Linux的压缩命令(tar,gzip,zip)

    打包和压缩.打包是指将一大堆文件或目录变成一个总的文件:压缩则是将一个大的文件通过一些压缩算法变成一个小文件. 这源于Linux中很多压缩程序只能针对一个文件进行压缩,这样当你想要压缩一大堆文件时,你 ...

  6. jQuery之DOM操作大全

    jQuery属性操作 获取元素属性的语法:attr(name) 例子:$("#img1").attr("src"); 设置元素单个属性的语法:attr(key, ...

  7. Docker 跨主机网络

    Docker提供两种原生的跨主机网络: Overlay  和  Macvlan libnetwork & CNM libnetwork 是 docker 容器网络库,最核心的内容是其定义的 C ...

  8. 深入理解Node.js中的垃圾回收和内存泄漏的捕获

    深入理解Node.js中的垃圾回收和内存泄漏的捕获 文章来自:http://wwsun.github.io/posts/understanding-nodejs-gc.html Jan 5, 2016 ...

  9. 【P2564】生日礼物(单调队列)

    这个题看上去状态比较多,实际上由于题目的输出需要,又因为是一个线性的结构,所以我们可以有一些操作. 这么想,如果我们有了一个满足条件的区间,此时我们缩减左端点,然后判断此时是否还是满足,满足就继续缩减 ...

  10. jQuery计时器插件

    /** * 定义一个jQuery计时插件,实现记录计时开始时间.结束时间,总共耗时的功能 * @param $ * * @author Ivan 2862099249@qq.com * @date 2 ...