hdu2665 主席树(可持久化线段树)
题意:给定一个数组,每次查询第l到r区间的第k大值
解法嘛,当然是主席树,主席树即可持久化线段树,什么叫可持久化呢,就是指能够访问历史版本的数据结构,那么对于某些只能离线处理的题目强制在线之后 ,可以通过在线处理操作
经过这题总算对可持久化线段树有了些了解,我们开始先建一颗空树,然后对于每次修改我们只会修改logn个点,我们可以新建logn个来避免每次都新建一颗线段树导致的爆空间,
对于这题来说我们线段树中维护的是这个区间的点的个数,插入的时候按权值大小插入,对于l到r我们可以通过1-r减去1-(l-1)来求出l到r的,对于第k大我们可以用求平衡树第k大的做法,每次查询节点个数看往左走还是往右走
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define mod 1000000007
#define C 0.5772156649
//#define ls l,m,rt<<1
//#define rs m+1,r,rt<<1|1
#define pii pair<int,int> using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f3f; int a[N],b[N],tot,rt[N*],ls[N*],rs[N*],sum[N*];
void build(int &o,int l,int r)
{
o=++tot;
sum[o]=;
if(l==r)return;
int m=(l+r)>>;
build(ls[o],l,m);
build(rs[o],m+,r);
}
void update(int &o,int l,int r,int last,int p)
{
o=++tot;
ls[o]=ls[last];
rs[o]=rs[last];
sum[o]=sum[last]+;
if(l==r)return ;
int m=(l+r)>>;
if(p<=m)update(ls[o],l,m,ls[last],p);
else update(rs[o],m+,r,rs[last],p);
}
int query(int ss,int tt,int l,int r,int x)
{
if(l==r)return l;
int m=(l+r)>>;
int cnt=sum[ls[tt]]-sum[ls[ss]];
if(x<=cnt)query(ls[ss],ls[tt],l,m,x);
else query(rs[ss],rs[tt],m+,r,x-cnt);
}
void work(int sz)
{
int ql,qr,x;
scanf("%d%d%d",&ql,&qr,&x);
int ans=query(rt[ql-],rt[qr],,sz,x);
printf("%d\n",b[ans]);
}
void debug()
{
puts("***********");
for(int i=;i<=tot;i++)
printf("%d %d %d\n",ls[i],rs[i],sum[i]);
puts("***********");
}
int main()
{
ios::sync_with_stdio(false);
cin.tie();
int t;
scanf("%d",&t);
while(t--)
{
int n,q;
scanf("%d%d",&n,&q);
for(int i=;i<=n;i++)scanf("%d",&a[i]),b[i]=a[i];
sort(b+,b+n+);
int sz=unique(b+,b++n)-(b+);
tot=;
build(rt[],,sz);
// debug();
for(int i=;i<=n;i++)a[i]=lower_bound(b+,b++sz,a[i])-b;
for(int i=;i<=n;i++)update(rt[i],,sz,rt[i-],a[i]);
// debug();
while(q--)work(sz);
}
return ;
}
/********************
1
4 2
4 1 3 2
2 3 2
********************/
hdu2665 主席树(可持久化线段树)的更多相关文章
- 主席树||可持久化线段树+离散化 || 莫队+分块 ||BZOJ 3585: mex || Luogu P4137 Rmq Problem / mex
题面:Rmq Problem / mex 题解: 先离散化,然后插一堆空白,大体就是如果(对于以a.data<b.data排序后的A)A[i-1].data+1!=A[i].data,则插一个空 ...
- [BZOJ 4771]七彩树(可持久化线段树+树上差分)
[BZOJ 4771]七彩树(可持久化线段树+树上差分) 题面 给定一棵n个点的有根树,编号依次为1到n,其中1号点是根节点.每个节点都被染上了某一种颜色,其中第i个节点的颜色为c[i].如果c[i] ...
- 归并树 划分树 可持久化线段树(主席树) 入门题 hdu 2665
如果题目给出1e5的数据范围,,以前只会用n*log(n)的方法去想 今天学了一下两三种n*n*log(n)的数据结构 他们就是大名鼎鼎的 归并树 划分树 主席树,,,, 首先来说两个问题,,区间第k ...
- 主席树[可持久化线段树](hdu 2665 Kth number、SP 10628 Count on a tree、ZOJ 2112 Dynamic Rankings、codeforces 813E Army Creation、codeforces960F:Pathwalks )
在今天三黑(恶意评分刷上去的那种)两紫的智推中,突然出现了P3834 [模板]可持久化线段树 1(主席树)就突然有了不详的预感2333 果然...然后我gg了!被大佬虐了! hdu 2665 Kth ...
- 权值线段树&&可持久化线段树&&主席树
权值线段树 顾名思义,就是以权值为下标建立的线段树. 现在让我们来考虑考虑上面那句话的产生的三个小问题: 1. 如果说权值作为下标了,那这颗线段树里存什么呢? ----- 这颗线段树中, 记录每个值出 ...
- BZOJ4771七彩树——可持久化线段树+set+树链的并+LCA
给定一棵n个点的有根树,编号依次为1到n,其中1号点是根节点.每个节点都被染上了某一种颜色,其中第i个节 点的颜色为c[i].如果c[i]=c[j],那么我们认为点i和点j拥有相同的颜色.定义dept ...
- BZOJ.4771.七彩树(可持久化线段树)
BZOJ 考虑没有深度限制,对整棵子树询问怎么做. 对于同种颜色中DFS序相邻的两个点\(u,v\),在\(dfn[u],dfn[v]\)处分别\(+1\),\(dfn[LCA(u,v)]\)处\(- ...
- BZOJ 3483 SGU505 Prefixes and suffixes(字典树+可持久化线段树)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3483 [题目大意] 给出一些串,同时给出m对前缀后缀,询问有多少串满足给出的前缀后缀模 ...
- BZOJ 3439 Kpm的MCpassword Trie树+可持久化线段树
题目大意:给定n个字符串,对于每一个字符串求以这个字符串为后缀的字符串中第k小的编号 首先将字符串反转 那么就变成了对于每一个字符串求以这个字符串为前缀的字符串中第k小的编号 然后考虑对字符串排序 那 ...
- [TS-A1505] [清橙2013中国国家集训队第二次作业] 树 [可持久化线段树,求树上路径第k大]
按Dfs序逐个插入点,建立可持久化线段树,每次查询即可,具体详见代码. 不知道为什么,代码慢的要死,, #include <iostream> #include <algorithm ...
随机推荐
- ehcache.xml配置详解
一:配置文件案例 <ehcache> <!-- 磁盘存储:将缓存中暂时不使用的对象,转移到硬盘,类似于Windows系统的虚拟内存 path:指定在硬盘上存储对象的路径 --> ...
- 关于在python manage.py createsuperuser时报django.db.utils.OperationalError: no such table: auth_user的解决办法
在stackflow上看到解决的办法是需要进行数据路的migrate:https://stackoverflow.com/questions/39071093/django-db-utils-oper ...
- tomcat 的 Pipeline 机制
一.server.xml 在每个容器对象里面都有一个pipeline,Pipeline就像是每个容器的逻辑总线. <Host name="localhost" appBase ...
- vue.js 拦截器
document.cookie = "mylogin=1";//1:登陆成功:保存登录状态 main.js router.beforeEach((to, from, next) = ...
- JavaWeb—过滤器Filter
1.Filter简介 Filter称之为过滤器,是用来做一些拦截的任务.比如客户端请求服务器的某个资源时(可以是Servlet.JSP.HTML等等),我们可以拦截.当服务器返回资源给客户端的时候,我 ...
- MongoDB学习笔记—windows下安装
1.登录官网下载安装包 官网下载地址:https://www.mongodb.com/download-center?jmp=nav#community 根据你的系统下载 32 位或 64 位的 .m ...
- LVS 介绍
LVS 介绍 说明: LVS是Linux Virtual Server的简称 LVS是一个实现负载均衡的开源软件项目 LVS效率要高于Nginx LVS工作在ISO的第4层(传输层) LVS架构有三层 ...
- python:列表的方法
注意:在列表的类方法一般是没有返回值的,如果将处理过的列表给新变量,新变量是空类型.如:>>>a=[1,2]>>>b=a.append(3)>>> ...
- 写makefile时候的cc和gcc
Linux 下 的 cc 和 gcc Linux 下 的 cc 和 gcc 周银辉 在Linux下一会看到cc,另一会又看到gcc,感觉又点混乱的样子.它们是同一个东西么,有啥区别呢 一分为二 ...
- INSPIRED启示录 读书笔记 - 第6章 招聘产品经理
产品经理应有的特质 个人素质和态度:技术可以学习,素质却难以培养,有些素质是成功的产品经理必不可少的 对产品的热情:对产品有一种本能的热爱,是夜以继日克服困难.完善产品的动力 用户立场:能换位思考,能 ...