poj3683

题意

n对新人举行婚礼,婚礼在不同时间段但可能重叠,婚礼有开始(Si)、结束(Ti)、仪式举行时间(Di),问能否给出一种举行方案,使得神父能参加所有的婚礼并举行仪式。

分析

xi为真 <=> 在开始时举行仪式,

xj为假 <=> 在结束时举行仪式。

设x' 为 非x。(若 x 为真,则 x' 为假)

xi -> xj 表示 xi 为真则 xj 为真。(xi xj 连边)

对于结婚仪式 i 和 j ,如果 Si ~ Si+Di 和 Sj ~ Sj+Dj 冲突,就有 xi' or xj' ,这种情况即 xi -> xj' ,xj -> xi' 。(xi 和 xj 不能同时选,即选择一个,那么选了 xi 后 就会选择到 xj' ,表示不选 xj。)

如果 Si ~ Si+Di 和 Tj-Dj ~ Dj 冲突,有 xi' or xj ,即 xi -> xj,xj' -> xi' 。

如果 Ti-Di ~ Ti 和 Sj ~ Sj+Dj 冲突,有 xi or xj' ,即 xi' -> xj',xj -> xi 。

如果 Ti-Di ~ Ti 和 Tj-Dj ~ Dj 冲突 ,有 xi or xj ,即 xi' -> xj ,xj' -> xi 。

代码参照《 挑战程序设计竞赛》,网上的代码大多是按照论文进行模拟?

书中有个步骤比较疑惑,打印可行解时,

x 所在的强连通分量的拓扑序在 x' 所在的强连通分量之后 <=> x 为真。

一点理解:拓扑序靠后的出度小,越不会影响后面的选择?

code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<stack>
#include<set>
#include<map>
#include<algorithm>
typedef long long ll; using namespace std; const int MAXN = 2e3 + 10;
int n, m; // 点、边
int vis[MAXN];
int flag[MAXN]; // 所属强连通分量的拓扑序
vector<int> G[MAXN], rG[MAXN];
vector<int> vs; // 后序遍历顺序的顶点列表
void addedge(int x, int y)
{
G[x].push_back(y); // 正向图
rG[y].push_back(x); // 反向图
}
void dfs(int u)
{
vis[u] = 1;
for(int i = 0; i < G[u].size(); i++)
{
int v = G[u][i];
if(!vis[v]) dfs(v);
}
vs.push_back(u);
}
void rdfs(int u, int k)
{
vis[u] = 1;
flag[u] = k;
for(int i = 0; i < rG[u].size(); i++)
{
int v = rG[u][i];
if(!vis[v]) rdfs(v, k);
}
}
int scc() // 强连通分量的个数
{
vs.clear();
memset(vis, 0, sizeof vis);
for(int i = 1; i <= n; i++) // [1...n]
if(!vis[i]) dfs(i);
memset(vis, 0, sizeof vis);
int k = 0;
for(int i = vs.size() - 1; i >= 0; i--)
if(!vis[vs[i]]) rdfs(vs[i], k++);
return k;
} int S[MAXN], D[MAXN], T[MAXN]; void solve()
{
int N = n;
n = 2 * n;
for(int i = 1; i <= n; i++)
{
G[i].clear();
rG[i].clear();
}
for(int i = 1; i <= n; i++) // 枚举、连边
{
for(int j = 1; j < i; j++)
{
if(min(S[i] + D[i], S[j] + D[j]) > max(S[i], S[j]))
{
// xi -> xj' ,xj -> xi'
addedge(i, j + N);
addedge(j, i + N);
}
if(min(S[i] + D[i], T[j]) > max(S[i], T[j] - D[j]))
{
// xi -> xj,xj' -> xi'
addedge(i, j);
addedge(j + N, i + N);
}
if(min(T[i], S[j] + D[j]) > max(S[j], T[i] - D[i]))
{
// xi' -> xj',xj -> xi
addedge(i + N, j + N);
addedge(j, i);
}
if(min(T[i], T[j]) > max(T[i] - D[i], T[j] - D[j]))
{
// xi' -> xj ,xj' -> xi
addedge(i + N, j);
addedge(j + N, i);
}
}
}
scc(); // 判断可行性
for(int i = 1; i <= N; i++)
{
if(flag[i] == flag[N + i])
{
puts("NO");
return;
}
} // 输出可行解
puts("YES");
for(int i = 1; i <= N; i++)
{
if(flag[i] > flag[i + N]) // 在仪式开始时举行
printf("%02d:%02d %02d:%02d\n", S[i] / 60, S[i] % 60, (S[i] + D[i]) / 60, (S[i] + D[i]) % 60);
else
printf("%02d:%02d %02d:%02d\n", (T[i] - D[i]) / 60, (T[i] - D[i]) % 60, T[i] / 60, T[i] % 60);
}
} int main()
{
while(~scanf("%d", &n))
{
for(int i = 1; i <= n; i++)
{
int x1, y1, x2, y2;
char p, q;
scanf("%02d:%02d %02d:%02d %d", &x1, &y1, &x2, &y2, &D[i]);
S[i] = x1 * 60 + y1;
T[i] = x2 * 60 + y2;
}
solve();
}
return 0;
}

poj3683的更多相关文章

  1. 2-sat——输出方案poj3683

    一篇讲的详细的博客 https://blog.csdn.net/Hawo11/article/details/74908233 缩点后为什么要建立反图? 如果是按原图处理,选择一个点之后要把所有其后续 ...

  2. 2-sat 输出任意一组可行解&拓扑排序+缩点 poj3683

    Priest John's Busiest Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8170   Accept ...

  3. poj3683 Priest John's Busiest Day

    2-SAT 输出可行解 找可行解的方案就是: 根据第一次建的图建一个反图..然后求逆拓扑排序,建反图的原因是保持冲突的两个事件肯定会被染成不同的颜色 求逆拓扑排序的原因也是为了对图染的色不会发生冲突, ...

  4. poj3683 Priest John's Busiest Day

    2-SAT. 读入用了黄学长的快速读入,在此膜拜感谢. 把每对时间当作俩个点.如果有交叉代表相互矛盾. 然后tarjan缩点,这样就能得出当前的2-SAT问题是否有解. 如果有解,跑拓扑排序就能找出一 ...

  5. POJ3683 Falsita

    http://poj.org/problem?id=3683 思路:2-SAT,输出任意一组方案,O(m+n) #include<cstdio> #include<iostream& ...

  6. 【POJ3683】Priest John's Busiest Day

    题目 John is the only priest in his town. September 1st is the John's busiest day in a year because th ...

  7. Poj3683:Priest John's Busiest Day

    题意 n对夫妻要结婚,第i对夫妻结婚的婚礼持续时间为[Si, Ti],他们会举行一个仪式,仪式时间为Di,这个仪式只能举行在开头或者结尾举行,要么[Si, Si+Di],要么[Ti-Di, Ti],然 ...

  8. POJ3683 Priest John's Busiest Day(2-SAT)

    Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 11049   Accepted: 3767   Special Judge ...

  9. poj3683(2-SAT 求任意方案)

    基础的2-SAT求任意方案的题目. Priest John's Busiest Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissi ...

随机推荐

  1. 利用jackson-databind,复杂对象对象和json数据互转

    如果简单对象,那么转换的方式比较多,这里指的复杂对象,是指对象里面存在cycle引用,比如: /** * @author ding * */@Entity@Table(name = "ser ...

  2. C#,VB.NET 如何将Excel转换为Text

    在工作中,有时我们需要转换文档的格式,之前已经跟大家介绍过了如何将Excel转换为PDF.今天将与大家分享如何将Excel转换为Text.这次我使用的依然是免费版的Spire.XLS for .NET ...

  3. A GDI+ Based Character LCD Control

    This is a renew. A GDI+ Based Character LCD Control by Conmajia Character liquid crystal display (LC ...

  4. 我喜欢的程序语言c++

    我喜欢的程序语言c++我喜欢的程序语言c++

  5. python字符串实战

    haproxy配置文件 思路:读一行,写一行 global log 127.0.0.1 local2 daemon maxconn 256 log 127.0.0.1 local2 info defa ...

  6. Android的root学习

    Android的内核就是Linux,所以Android获取root其实和Linux获取root权限是一回事儿.在Linux下获取root权限的时候就是执行sudo或者su,接下来系统会提示输入root ...

  7. javascript中的==与===

    一.主要区别: 1.通俗的来说,==是值的比较,而===不仅仅比较值,还比较引用的是否是同一个对象. 2.用==来比较的时候,如果两个数的操作数的类型不一样,会先转换.而===的操作数则不会进行任何转 ...

  8. UVA 10905 Children's Game (贪心)

    Children's Game Problem Description There are lots of number games for children. These games are pre ...

  9. HDU_1009_FatMouse' Trade

    FatMouse' Trade Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  10. JavaScript面向对象编程—this详解

      this详解 作者的话 在JavaScriptOPPt面向对象编程中,this这位老大哥,相信大家不会陌生.大家在遇到this时,很多朋友难免会有个疑问:"这个this是什么,它到底指向 ...