java 操作格子问题(线段树)
很久之前做过线段树的问题(操作格子),时间长了之后再次接触到,发现当初理解的不是很透彻,然后代码冗长,再遇到的时候发现自己甚至不能独立地完成这个问题。
所以算法这个东西啊,
第一,是要经常练习(我个人认为…每一个程序员都不应该不擅长算法…从今天开始,要常写博客!)。
第二,是一定要理解透彻,理解透彻并不是说到网上找到了解答,然后自己照着能够运行出来,这样是不够的!甚至不是说你看完了一个算法之后,完全不看他的解答,然后你自己写出来,这样也是不够的!
先贴题目:
有n个格子,从左到右放成一排,编号为1-n。
共有m次操作,有3种操作类型:
1.修改一个格子的权值,
2.求连续一段格子权值和,
3.求连续一段格子的最大值。
对于每个2、3操作输出你所求出的结果。
第一行2个整数n,m。
接下来一行n个整数表示n个格子的初始权值。
接下来m行,每行3个整数p,x,y,p表示操作类型,p=1时表示修改格子x的权值为y,p=2时表示求区间[x,y]内格子权值和,p=3时表示求区间[x,y]内格子最大的权值。
有若干行,行数等于p=2或3的操作总数。
每行1个整数,对应了每个p=2或3操作的结果。
1 2 3 4
2 1 3
1 4 3
3 1 4
3
对于20%的数据n <= 100,m <= 200。
对于50%的数据n <= 5000,m <= 5000。
对于100%的数据1 <= n <= 100000,m <= 100000,0 <= 格子权值 <= 10000。
下面贴代码:
//操作格子
#include<iostream>
#include<algorithm>
using namespace std;
struct GridNode{
int sum = 0;
int max = 0;
}segTree[400000];
int a[100001];
void build(int root, int start, int end){
//叶子
if (start == end){
segTree[root].sum = a[start];
segTree[root].max = a[start];
return;
}
int mid = (start + end) / 2;
build(2 * root, start, mid);
build(2 * root + 1, mid + 1, end);
//回溯更新结点
segTree[root].sum = segTree[2 * root].sum + segTree[2 * root + 1].sum;
segTree[root].max = max(segTree[2 * root].max, segTree[2 * root + 1].max); }
void update(int pos, int root, int start, int end, int x){
if (start == end){
segTree[root].max = x;
segTree[root].sum = x;
return;
}
int mid = (start + end) / 2;
if (pos <= mid){
update(pos, 2 * root, start, mid, x);
}
else{
update(pos, 2 * root + 1, mid + 1, end, x);
}
//回溯更新结点
segTree[root].sum = segTree[2 * root].sum + segTree[2 * root + 1].sum;
segTree[root].max = max(segTree[2 * root].max, segTree[2 * root + 1].max);
}
int querySum(int root, int nStart, int nEnd, int qStart, int qEnd){
if (qStart <= nStart && qEnd >= nEnd){
return segTree[root].sum;
}
int sum = 0;
int mid = (nStart + nEnd) / 2;
if (qStart <= mid)
sum += querySum(2 * root, nStart, mid, qStart, qEnd);
if (qEnd > mid)
sum += querySum(2 * root + 1, mid + 1, nEnd, qStart, qEnd);
return sum;
}
int queryMax(int root, int nStart, int nEnd, int qStart, int qEnd){
if (qStart <= nStart && qEnd >= nEnd){
return segTree[root].max;
}
int maxN = -1;
int mid = (nStart + nEnd) / 2;
if (qStart <= mid)
maxN = max(maxN, queryMax(2 * root, nStart, mid, qStart, qEnd));
if (qEnd > mid)
maxN = max(maxN, queryMax(2 * root + 1, mid + 1, nEnd, qStart, qEnd));
return maxN;
}
int main(){
int n, m;
cin >> n >> m;
for (int i = 1; i <= n; i++){
cin >> a[i];
} build(1, 1, n);
for (int i = 0; i<m; i++){
int op, x, y;
cin >> op >> x >> y;
int resSum;
int resMax;
switch (op) {
case 1:
update(x, 1, 1, n, y);
break;
case 2:
resSum = querySum(1, 1, n, x, y);
cout << resSum << endl;
break;
case 3:
resMax = queryMax(1, 1, n, x, y);
cout << resMax << endl;
break; }
}
}
java 操作格子问题(线段树)的更多相关文章
- 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树)
2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...
- 洛谷P4247 序列操作 [清华集训] 线段树
正解:线段树 解题报告: 传送门! 通过这题我get了一个神奇的,叫,线段树五问的东西hhhh 听起来有点中二但感觉真正做题的时候还是比较有用的,,,?感觉会让条理清晰很多呢,所以放一下QwQ →每个 ...
- 【BZOJ 2333 】[SCOI2011]棘手的操作(离线+线段树|可并堆-左偏树)
2333: [SCOI2011]棘手的操作 Description 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边 ...
- BZOJ2333 [SCOI2011]棘手的操作 【离线 + 线段树】
题目 有N个节点,标号从1到N,这N个节点一开始相互不连通.第i个节点的初始权值为a[i],接下来有如下一些操作: U x y: 加一条边,连接第x个节点和第y个节点 A1 x v: 将第x个节点的权 ...
- 【序列操作III】线段树
题目描述 给出序列 a1,a2,…an(0≤ai≤109),有关序列的四种操作: 1. al,al+1,…,ar(1≤l≤r≤n)加上 x(-103≤x≤103) 2. al,al+1,…,ar(1≤ ...
- 【序列操作I】线段树
题目描述 Lxhgww 最近收到了一个 01 序列,序列里面包含了 n(1≤n≤105)个数,这些书要么是 0,要么是 1,现在对这个序列有五种变换操作和询问操作:1. 0 a b ,把[a,b]区间 ...
- 2018.07.30 cogs2632. [HZOI 2016] 数列操作d(线段树)
传送门 线段树基本操作 区间加等差数列,维护区间和. 对于每个区间维护等差数列首项和公差,易证这两个东西都是可合并的,然后使用小学奥数的知识就可以切掉这题. 代码: #include<bits/ ...
- BZOJ4034 [HAOI2015]树上操作+DFS序+线段树
参考:https://www.cnblogs.com/liyinggang/p/5965981.html 题意:是一个数据结构题,树上的,用dfs序,变成线性的: 思路:对于每一个节点x,记录其DFS ...
- [BZOJ1858] [SCOI2010] 序列操作 解题报告 (线段树)
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1858 Description lxhgww最近收到了一个01序列,序列里面包含了n个数, ...
随机推荐
- 使用vs编译事件来动态发布配置文件
我们知道开发有很多的环境,一般我们会分为开发环境,测试环境,生产环境.而我们使用的vs默认配置就两种:Debug和Release.当然vs支持通过配置管理器来添加,编辑及删除配置. 为此不同的环境和配 ...
- 一脸懵逼学习基于CentOs的Hadoop集群安装与配置
1:Hadoop分布式计算平台是由Apache软件基金会开发的一个开源分布式计算平台.以Hadoop分布式文件系统(HDFS)和MapReduce(Google MapReduce的开源实现)为核心的 ...
- [js高手之路] html5 canvas动画教程 - 匀速运动
匀速运动:指的是物体在一条直线上运动,并且物体在任何相等时间间隔内通过的位移都是相等的.其实就是匀速直线运动,它的特点是加速度为0,从定义可知,在任何相等的时间间隔内,速度大小和方向是相同的. < ...
- python 的日志logging模块学习
1.简单的将日志打印到屏幕 import logging logging.debug('This is debug message') logging.info('This is info messa ...
- ASP.NET没有魔法——ASP.NET MVC 与数据库之EntityFramework配置与连接字符串
前几篇文章中介绍了如何使用Entity Framework来操作数据库,但是对EF的配置.连接字符串的指定仍然存在一些疑问. 本章将对EF的配置进行介绍. EF可以通过两种方式来实现配置,分别是代码方 ...
- PL/SQL 三个小例子
/* SQL语句 员工集合:select to_char(hiredate,'yyyy') from emp --> 光标 --> 循环--> 退出条件:notfound 变量 co ...
- java中==与equel的区别
值类型是存储在内存中的堆栈(以后简称栈),而引用类型的变量在栈中仅仅是存储引用类型变量的地址,而其本身则存储在堆中. ==操作比较的是两个变量的值是否相等,对于引用型变量表示的是两个变量在堆中存储的地 ...
- java内部类demo
内部类主要有三种:静态内部类,实例内部类,局部变量内部类 1.静态内部类,该类被static修饰,并且是成员变量,它只能访问外部类被static修饰的方法以及字段(这种说法只局限于不再内部类中创建外部 ...
- btsync 分享资源
Btsync是一款跨平台软件,可以在不同的设备之间共享文件. Btsync类似于BT下载,用户对用户(多用户)之间的传送. 文档的分享者可以将资源放到文件夹下,生成共享Key,分享给接受者,接受者只需 ...
- C#同步方法转异步
public async Task DelayAsync() { await Task.Run(()=>Delay()); } private void Delay() { } 本作品采用知识共 ...