存储结构与邻接矩阵,深度优先和广度优先遍历及Java实现
如果看完本篇博客任有不明白的地方,可以去看一下《大话数据结构》的7.4以及7.5,讲得比较易懂,不过是用C实现
下面内容来自segmentfault
存储结构
要存储一个图,我们知道图既有结点,又有边,对于有权图来说,每条边上还带有权值。常用的图的存储结构主要有以下二种:
- 邻接矩阵
- 邻接表
邻接矩阵
我们知道,要表示结点,我们可以用一个一维数组来表示,然而对于结点和结点之间的关系,则无法简单地用一维数组来表示了,我们可以用二维数组来表示,也就是一个矩阵形式的表示方法。
我们假设A是这个二维数组,那么A中的一个元素aij不仅体现出了结点vi和结点vj的关系,而且aij的值正可以表示权值的大小。
以下是一个无向图的邻接矩阵表示示例:
从上图我们可以看到,无向图的邻接矩阵是对称矩阵,也一定是对称矩阵。且其左上角到右下角的对角线上值为零(对角线上表示的是相同的结点)
有向图的邻接矩阵是怎样的呢?
对于带权图,aij的值可用来表示权值的大小,上面两张图是不带权的图,因此它们值都是1。
邻接表
我们知道,图的邻接矩阵存储方法用的是一个n*n的矩阵,当这个矩阵是稠密的矩阵(比如说当图是完全图的时候),那么当然选择用邻接矩阵存储方法。
可是如果这个矩阵是一个稀疏的矩阵呢,这个时候邻接表存储结构就是一种更节省空间的存储结构了。
对于上文中的无向图,我们可以用邻接表来表示,如下:
每一个结点后面所接的结点都是它的邻接结点。
邻接矩阵与邻接表的比较
当图中结点数目较小且边较多时,采用邻接矩阵效率更高。
当节点数目远大且边的数目远小于相同结点的完全图的边数时,采用邻接表存储结构更有效率。
邻接矩阵的Java实现
邻接矩阵模型类
邻接矩阵模型类的类名为AMWGraph.java,能够通过该类构造一个邻接矩阵表示的图,且提供插入结点,插入边,取得某一结点的第一个邻接结点和下一个邻接结点。
import java.util.ArrayList;
import java.util.LinkedList;
/**
* @description 邻接矩阵模型类
* @author beanlam
* @time 2015.4.17
*/
public class AMWGraph {
private ArrayList vertexList;//存储点的链表
private int[][] edges;//邻接矩阵,用来存储边
private int numOfEdges;//边的数目 public AMWGraph(int n) {
//初始化矩阵,一维数组,和边的数目
edges=new int[n][n];
vertexList=new ArrayList(n);
numOfEdges=0;
} //得到结点的个数
public int getNumOfVertex() {
return vertexList.size();
} //得到边的数目
public int getNumOfEdges() {
return numOfEdges;
} //返回结点i的数据
public Object getValueByIndex(int i) {
return vertexList.get(i);
} //返回v1,v2的权值
public int getWeight(int v1,int v2) {
return edges[v1][v2];
} //插入结点
public void insertVertex(Object vertex) {
vertexList.add(vertexList.size(),vertex);
} //插入结点
public void insertEdge(int v1,int v2,int weight) {
edges[v1][v2]=weight;
numOfEdges++;
} //删除结点
public void deleteEdge(int v1,int v2) {
edges[v1][v2]=0;
numOfEdges--;
} //得到第一个邻接结点的下标
public int getFirstNeighbor(int index) {
for(int j=0;j<vertexList.size();j++) {
if (edges[index][j]>0) {
return j;
}
}
return -1;
} //根据前一个邻接结点的下标来取得下一个邻接结点
public int getNextNeighbor(int v1,int v2) {
for (int j=v2+1;j<vertexList.size();j++) {
if (edges[v1][j]>0) {
return j;
}
}
return -1;
}
}
邻接矩阵模型类的测试
接下来根据下面一个有向图来设置测试该模型类
TestAMWGraph.java测试程序如下所示:
/**
* @description AMWGraph类的测试类
* @author beanlam
* @time 2015.4.17
*/
public class TestAMWGraph {
public static void main(String args[]) {
int n=4,e=4;//分别代表结点个数和边的数目
String labels[]={"V1","V1","V3","V4"};//结点的标识
AMWGraph graph=new AMWGraph(n);
for(String label:labels) {
graph.insertVertex(label);//插入结点
}
//插入四条边
graph.insertEdge(0, 1, 2);
graph.insertEdge(0, 2, 5);
graph.insertEdge(2, 3, 8);
graph.insertEdge(3, 0, 7); System.out.println("结点个数是:"+graph.getNumOfVertex());
System.out.println("边的个数是:"+graph.getNumOfEdges()); graph.deleteEdge(0, 1);//删除<V1,V2>边
System.out.println("删除<V1,V2>边后...");
System.out.println("结点个数是:"+graph.getNumOfVertex());
System.out.println("边的个数是:"+graph.getNumOfEdges());
}
}
控制台输出结果如下图所示:
遍历
图的遍历,所谓遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略:
深度优先遍历
广度优先遍历
深度优先
深度优先遍历,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点。总结起来可以这样说:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。
我们从这里可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。
具体算法表述如下:
访问初始结点v,并标记结点v为已访问。
查找结点v的第一个邻接结点w。
若w存在,则继续执行4,否则算法结束。
若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。
查找结点v的w邻接结点的下一个邻接结点,转到步骤3。
例如下图,其深度优先遍历顺序为 1->2->4->8->5->3->6->7
广度优先
类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点。
具体算法表述如下:
访问初始结点v并标记结点v为已访问。
结点v入队列
当队列非空时,继续执行,否则算法结束。
出队列,取得队头结点u。
查找结点u的第一个邻接结点w。
若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:
1). 若结点w尚未被访问,则访问结点w并标记为已访问。
2). 结点w入队列
3). 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。
如下图,其广度优先算法的遍历顺序为:1->2->3->4->5->6->7->8
Java实现
上面已经给出了邻接矩阵图模型类 AMWGraph.java
,在原先类的基础上增加了两个遍历的函数,分别是 depthFirstSearch()
和 broadFirstSearch()
分别代表深度优先和广度优先遍历。
import java.util.ArrayList;
import java.util.LinkedList;
/**
* @description 邻接矩阵模型类
* @author beanlam
* @time 2015.4.17
*/
public class AMWGraph {
private ArrayList vertexList;//存储点的链表
private int[][] edges;//邻接矩阵,用来存储边
private int numOfEdges;//边的数目 public AMWGraph(int n) {
//初始化矩阵,一维数组,和边的数目
edges=new int[n][n];
vertexList=new ArrayList(n);
numOfEdges=0;
} //得到结点的个数
public int getNumOfVertex() {
return vertexList.size();
} //得到边的数目
public int getNumOfEdges() {
return numOfEdges;
} //返回结点i的数据
public Object getValueByIndex(int i) {
return vertexList.get(i);
} //返回v1,v2的权值
public int getWeight(int v1,int v2) {
return edges[v1][v2];
} //插入结点
public void insertVertex(Object vertex) {
vertexList.add(vertexList.size(),vertex);
} //插入结点
public void insertEdge(int v1,int v2,int weight) {
edges[v1][v2]=weight;
numOfEdges++;
} //删除结点
public void deleteEdge(int v1,int v2) {
edges[v1][v2]=0;
numOfEdges--;
} //得到第一个邻接结点的下标
public int getFirstNeighbor(int index) {
for(int j=0;j<vertexList.size();j++) {
if (edges[index][j]>0) {
return j;
}
}
return -1;
} //根据前一个邻接结点的下标来取得下一个邻接结点
public int getNextNeighbor(int v1,int v2) {
for (int j=v2+1;j<vertexList.size();j++) {
if (edges[v1][j]>0) {
return j;
}
}
return -1;
} //私有函数,深度优先遍历
private void depthFirstSearch(boolean[] isVisited,int i) {
//首先访问该结点,在控制台打印出来
System.out.print(getValueByIndex(i)+" ");
//置该结点为已访问
isVisited[i]=true; int w=getFirstNeighbor(i);//
while (w!=-1) {
if (!isVisited[w]) {
depthFirstSearch(isVisited,w);
}
w=getNextNeighbor(i, w);
}
} //对外公开函数,深度优先遍历,与其同名私有函数属于方法重载
public void depthFirstSearch() {
for(int i=0;i<getNumOfVertex();i++) {
//因为对于非连通图来说,并不是通过一个结点就一定可以遍历所有结点的。
if (!isVisited[i]) {
depthFirstSearch(isVisited,i);
}
}
} //私有函数,广度优先遍历
private void broadFirstSearch(boolean[] isVisited,int i) {
int u,w;
LinkedList queue=new LinkedList(); //访问结点i
System.out.print(getValueByIndex(i)+" ");
isVisited[i]=true;
//结点入队列
queue.addlast(i);
while (!queue.isEmpty()) {
u=((Integer)queue.removeFirst()).intValue();
w=getFirstNeighbor(u);
while(w!=-1) {
if(!isVisited[w]) {
//访问该结点
System.out.print(getValueByIndex(w)+" ");
//标记已被访问
isVisited[w]=true;
//入队列
queue.addLast(w);
}
//寻找下一个邻接结点
w=getNextNeighbor(u, w);
}
}
} //对外公开函数,广度优先遍历
public void broadFirstSearch() {
for(int i=0;i<getNumOfVertex();i++) {
if(!isVisited[i]) {
broadFirstSearch(isVisited, i);
}
}
}
}
上面的public声明的depthFirstSearch()和broadFirstSearch()函数,是为了应对当该图是非连通图的情况,如果是非连通图,那么只通过一个结点是无法完全遍历所有结点的。
下面根据上面用来举例的图来构造测试类:
public class TestSearch { public static void main(String args[]) {
int n=8,e=9;//分别代表结点个数和边的数目
String labels[]={"1","2","3","4","5","6","7","8"};//结点的标识
AMWGraph graph=new AMWGraph(n);
for(String label:labels) {
graph.insertVertex(label);//插入结点
}
//插入九条边
graph.insertEdge(0, 1, 1);
graph.insertEdge(0, 2, 1);
graph.insertEdge(1, 3, 1);
graph.insertEdge(1, 4, 1);
graph.insertEdge(3, 7, 1);
graph.insertEdge(4, 7, 1);
graph.insertEdge(2, 5, 1);
graph.insertEdge(2, 6, 1);
graph.insertEdge(5, 6, 1);
graph.insertEdge(1, 0, 1);
graph.insertEdge(2, 0, 1);
graph.insertEdge(3, 1, 1);
graph.insertEdge(4, 1, 1);
graph.insertEdge(7, 3, 1);
graph.insertEdge(7, 4, 1);
graph.insertEdge(6, 2, 1);
graph.insertEdge(5, 2, 1);
graph.insertEdge(6, 5, 1); System.out.println("深度优先搜索序列为:");
graph.depthFirstSearch();
System.out.println();
System.out.println("广度优先搜索序列为:");
graph.broadFirstSearch();
}
}
运行后控制台输出如下:
转自:https://segmentfault.com/a/1190000002685782 和 https://segmentfault.com/a/1190000002685939
存储结构与邻接矩阵,深度优先和广度优先遍历及Java实现的更多相关文章
- 图的理解:深度优先和广度优先遍历及其 Java 实现
遍历 图的遍历,所谓遍历,即是对结点的访问.一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略: 深度优先遍历 广度优先遍历 深度优先 深度优先遍历,从初始访问结点出发,我们知道 ...
- 图的深度优先和广度优先遍历(图以邻接表表示,由C++面向对象实现)
学习了图的深度优先和广度优先遍历,发现不管是教材还是网上,大都为C语言函数式实现,为了加深理解,我以C++面向对象的方式把图的深度优先和广度优先遍历重写了一遍. 废话不多说,直接上代码: #inclu ...
- JavaScript实现树深度优先和广度优先遍历搜索
1.前置条件 我们提前构建一棵树,类型为 Tree ,其节点类型为 Note.这里我们不进行过多的实现,简单描述下 Note 的结构: class Node{ constructor(data){ t ...
- 图的存储结构:邻接矩阵(邻接表)&链式前向星
[概念]疏松图&稠密图: 疏松图指,点连接的边不多的图,反之(点连接的边多)则为稠密图. Tips:邻接矩阵与邻接表相比,疏松图多用邻接表,稠密图多用邻接矩阵. 邻接矩阵: 开一个二维数组gr ...
- 【PHP数据结构】图的遍历:深度优先与广度优先
在上一篇文章中,我们学习完了图的相关的存储结构,也就是 邻接矩阵 和 邻接表 .它们分别就代表了最典型的 顺序存储 和 链式存储 两种类型.既然数据结构有了,那么我们接下来当然就是学习对这些数据结构的 ...
- 算法与数据结构(四) 图的物理存储结构与深搜、广搜(Swift版)
开门见山,本篇博客就介绍图相关的东西.图其实就是树结构的升级版.上篇博客我们聊了树的一种,在后边的博客中我们还会介绍其他类型的树,比如红黑树,B树等等,以及这些树结构的应用.本篇博客我们就讲图的存储结 ...
- 多级树的深度遍历与广度遍历(Java实现)
目录 多级树的深度遍历与广度遍历 节点模型 深度优先遍历 广度优先遍历 多级树的深度遍历与广度遍历 深度优先遍历与广度优先遍历其实是属于图算法的一种,多级树可以看做是一种特殊的图,所以多级数的深/广遍 ...
- C++编程练习(9)----“图的存储结构以及图的遍历“(邻接矩阵、深度优先遍历、广度优先遍历)
图的存储结构 1)邻接矩阵 用两个数组来表示图,一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中边或弧的信息. 2)邻接表 3)十字链表 4)邻接多重表 5)边集数组 本文只用代码实现用 ...
- C语言实现数据结构的邻接矩阵----数组生成矩阵、打印、深度优先遍历和广度优先遍历
写在前面 图的存储结构有两种:一种是基于二维数组的邻接矩阵表示法. 另一种是基于链表的的邻接表表示法. 在邻接矩阵中,可以如下表示顶点和边连接关系: 说明: 将顶点对应为下标,根据横纵坐标将矩阵中的某 ...
随机推荐
- Codeforces758B
B. Blown Garland time limit per test:1 second memory limit per test:256 megabytes input:standard inp ...
- HDU1864(背包)
最大报销额 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- 转载:MyEclipse安装插件的几种方法
地址:http://www.cnblogs.com/pharen/archive/2012/02/08/2343342.html 本文讲解MyEclipse(MyEclipse10)的三种方法,以SV ...
- 从jvm的角度来看java的多线程
最近在学习jvm,发现随着对虚拟机底层的了解,对java的多线程也有了全新的认识,原来一个小小的synchronized关键字里别有洞天.决定把自己关于java多线程的所学整理成一篇文章,从最基础的为 ...
- ArcGIS制图技巧系列(3)—让地图更有立体感
ArcGIS制图技巧系列(3)-让地图更有立体感 by 李远祥 在前面的章节中,我们已经介绍过各种的地图效果,如发光效果,山体阴影效果,植被填充效果等,所有的这些效果不外乎是各种技术的叠加和技巧的使用 ...
- Struts2系列笔记(2)---Struts.XML
Struts2.xml 本篇博客主要讲Struts2.xml中package下的标签和标签属性,主要分以下四个部分说明: (1)action的配置基本属性 (2)同一个Action类中不同方法满足不同 ...
- C#在win10(win8)下读写记事本注意事项
分析:由于windows10或者windows8系统机制问题,C#在读写txt文件的时候,可能会出现如下问题(对路径“”的访问被拒绝): 解决: 1.我们在C盘下面新建立一个记事本,会发下类似如下报错 ...
- 矢量切片(Vector tile)番外一:Proj4js
说明:番外篇是对正篇矢量切片(Vector tile)中提到的一些值得继续延伸的关注点继续进行探索和学习,所涉及的内容以解决实际问题为主要导向. 一.新的需求? 在完成了矢量切片的工作后,新的需求出现 ...
- 使用Dom解析器,操作XML里面的信息
import java.io.FileNotFoundException;import java.io.FileOutputStream;import java.io.IOException;impo ...
- STAR法则
现在相信大部分跳槽的朋友都已经将工作辞了,正在找工作的这个漩涡中,还没辞掉的可能也快了,找工作的这段时间是一个非常考验你的扛打击能力的时候.像网上投了几十家简历,只有几家邀请面试的,其他都是连面试阶段 ...