如果看完本篇博客任有不明白的地方,可以去看一下《大话数据结构》的7.4以及7.5,讲得比较易懂,不过是用C实现

下面内容来自segmentfault

存储结构

要存储一个图,我们知道图既有结点,又有边,对于有权图来说,每条边上还带有权值。常用的图的存储结构主要有以下二种:

  • 邻接矩阵
  • 邻接表

邻接矩阵

我们知道,要表示结点,我们可以用一个一维数组来表示,然而对于结点和结点之间的关系,则无法简单地用一维数组来表示了,我们可以用二维数组来表示,也就是一个矩阵形式的表示方法。

我们假设A是这个二维数组,那么A中的一个元素aij不仅体现出了结点vi和结点vj的关系,而且aij的值正可以表示权值的大小。

以下是一个无向图的邻接矩阵表示示例:

从上图我们可以看到,无向图的邻接矩阵是对称矩阵,也一定是对称矩阵。且其左上角到右下角的对角线上值为零(对角线上表示的是相同的结点)

有向图的邻接矩阵是怎样的呢?

对于带权图,aij的值可用来表示权值的大小,上面两张图是不带权的图,因此它们值都是1。

邻接表

我们知道,图的邻接矩阵存储方法用的是一个n*n的矩阵,当这个矩阵是稠密的矩阵(比如说当图是完全图的时候),那么当然选择用邻接矩阵存储方法。
可是如果这个矩阵是一个稀疏的矩阵呢,这个时候邻接表存储结构就是一种更节省空间的存储结构了。
对于上文中的无向图,我们可以用邻接表来表示,如下:

每一个结点后面所接的结点都是它的邻接结点。

邻接矩阵与邻接表的比较

当图中结点数目较小且边较多时,采用邻接矩阵效率更高。
当节点数目远大且边的数目远小于相同结点的完全图的边数时,采用邻接表存储结构更有效率。

邻接矩阵的Java实现

邻接矩阵模型类

邻接矩阵模型类的类名为AMWGraph.java,能够通过该类构造一个邻接矩阵表示的图,且提供插入结点,插入边,取得某一结点的第一个邻接结点和下一个邻接结点。

import java.util.ArrayList;
import java.util.LinkedList;
/**
* @description 邻接矩阵模型类
* @author beanlam
* @time 2015.4.17
*/
public class AMWGraph {
private ArrayList vertexList;//存储点的链表
private int[][] edges;//邻接矩阵,用来存储边
private int numOfEdges;//边的数目 public AMWGraph(int n) {
//初始化矩阵,一维数组,和边的数目
edges=new int[n][n];
vertexList=new ArrayList(n);
numOfEdges=0;
} //得到结点的个数
public int getNumOfVertex() {
return vertexList.size();
} //得到边的数目
public int getNumOfEdges() {
return numOfEdges;
} //返回结点i的数据
public Object getValueByIndex(int i) {
return vertexList.get(i);
} //返回v1,v2的权值
public int getWeight(int v1,int v2) {
return edges[v1][v2];
} //插入结点
public void insertVertex(Object vertex) {
vertexList.add(vertexList.size(),vertex);
} //插入结点
public void insertEdge(int v1,int v2,int weight) {
edges[v1][v2]=weight;
numOfEdges++;
} //删除结点
public void deleteEdge(int v1,int v2) {
edges[v1][v2]=0;
numOfEdges--;
} //得到第一个邻接结点的下标
public int getFirstNeighbor(int index) {
for(int j=0;j<vertexList.size();j++) {
if (edges[index][j]>0) {
return j;
}
}
return -1;
} //根据前一个邻接结点的下标来取得下一个邻接结点
public int getNextNeighbor(int v1,int v2) {
for (int j=v2+1;j<vertexList.size();j++) {
if (edges[v1][j]>0) {
return j;
}
}
return -1;
}
}

邻接矩阵模型类的测试

接下来根据下面一个有向图来设置测试该模型类

TestAMWGraph.java测试程序如下所示:

/**
* @description AMWGraph类的测试类
* @author beanlam
* @time 2015.4.17
*/
public class TestAMWGraph {
public static void main(String args[]) {
int n=4,e=4;//分别代表结点个数和边的数目
String labels[]={"V1","V1","V3","V4"};//结点的标识
AMWGraph graph=new AMWGraph(n);
for(String label:labels) {
graph.insertVertex(label);//插入结点
}
//插入四条边
graph.insertEdge(0, 1, 2);
graph.insertEdge(0, 2, 5);
graph.insertEdge(2, 3, 8);
graph.insertEdge(3, 0, 7); System.out.println("结点个数是:"+graph.getNumOfVertex());
System.out.println("边的个数是:"+graph.getNumOfEdges()); graph.deleteEdge(0, 1);//删除<V1,V2>边
System.out.println("删除<V1,V2>边后...");
System.out.println("结点个数是:"+graph.getNumOfVertex());
System.out.println("边的个数是:"+graph.getNumOfEdges());
}
}

控制台输出结果如下图所示:

遍历

图的遍历,所谓遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略:

  • 深度优先遍历

  • 广度优先遍历

深度优先

深度优先遍历,从初始访问结点出发,我们知道初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点。总结起来可以这样说:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点。

我们从这里可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。

具体算法表述如下:

  1. 访问初始结点v,并标记结点v为已访问。

  2. 查找结点v的第一个邻接结点w。

  3. 若w存在,则继续执行4,否则算法结束。

  4. 若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。

  5. 查找结点v的w邻接结点的下一个邻接结点,转到步骤3。

例如下图,其深度优先遍历顺序为 1->2->4->8->5->3->6->7

广度优先

类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点。

具体算法表述如下:

  1. 访问初始结点v并标记结点v为已访问。

  2. 结点v入队列

  3. 当队列非空时,继续执行,否则算法结束。

  4. 出队列,取得队头结点u。

  5. 查找结点u的第一个邻接结点w。

  6. 若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:

    1). 若结点w尚未被访问,则访问结点w并标记为已访问。
    2). 结点w入队列
    3). 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。

如下图,其广度优先算法的遍历顺序为:1->2->3->4->5->6->7->8

Java实现

上面已经给出了邻接矩阵图模型类 AMWGraph.java,在原先类的基础上增加了两个遍历的函数,分别是 depthFirstSearch()broadFirstSearch() 分别代表深度优先和广度优先遍历。

import java.util.ArrayList;
import java.util.LinkedList;
/**
* @description 邻接矩阵模型类
* @author beanlam
* @time 2015.4.17
*/
public class AMWGraph {
private ArrayList vertexList;//存储点的链表
private int[][] edges;//邻接矩阵,用来存储边
private int numOfEdges;//边的数目 public AMWGraph(int n) {
//初始化矩阵,一维数组,和边的数目
edges=new int[n][n];
vertexList=new ArrayList(n);
numOfEdges=0;
} //得到结点的个数
public int getNumOfVertex() {
return vertexList.size();
} //得到边的数目
public int getNumOfEdges() {
return numOfEdges;
} //返回结点i的数据
public Object getValueByIndex(int i) {
return vertexList.get(i);
} //返回v1,v2的权值
public int getWeight(int v1,int v2) {
return edges[v1][v2];
} //插入结点
public void insertVertex(Object vertex) {
vertexList.add(vertexList.size(),vertex);
} //插入结点
public void insertEdge(int v1,int v2,int weight) {
edges[v1][v2]=weight;
numOfEdges++;
} //删除结点
public void deleteEdge(int v1,int v2) {
edges[v1][v2]=0;
numOfEdges--;
} //得到第一个邻接结点的下标
public int getFirstNeighbor(int index) {
for(int j=0;j<vertexList.size();j++) {
if (edges[index][j]>0) {
return j;
}
}
return -1;
} //根据前一个邻接结点的下标来取得下一个邻接结点
public int getNextNeighbor(int v1,int v2) {
for (int j=v2+1;j<vertexList.size();j++) {
if (edges[v1][j]>0) {
return j;
}
}
return -1;
} //私有函数,深度优先遍历
private void depthFirstSearch(boolean[] isVisited,int i) {
//首先访问该结点,在控制台打印出来
System.out.print(getValueByIndex(i)+" ");
//置该结点为已访问
isVisited[i]=true; int w=getFirstNeighbor(i);//
while (w!=-1) {
if (!isVisited[w]) {
depthFirstSearch(isVisited,w);
}
w=getNextNeighbor(i, w);
}
} //对外公开函数,深度优先遍历,与其同名私有函数属于方法重载
public void depthFirstSearch() {
for(int i=0;i<getNumOfVertex();i++) {
//因为对于非连通图来说,并不是通过一个结点就一定可以遍历所有结点的。
if (!isVisited[i]) {
depthFirstSearch(isVisited,i);
}
}
} //私有函数,广度优先遍历
private void broadFirstSearch(boolean[] isVisited,int i) {
int u,w;
LinkedList queue=new LinkedList(); //访问结点i
System.out.print(getValueByIndex(i)+" ");
isVisited[i]=true;
//结点入队列
queue.addlast(i);
while (!queue.isEmpty()) {
u=((Integer)queue.removeFirst()).intValue();
w=getFirstNeighbor(u);
while(w!=-1) {
if(!isVisited[w]) {
//访问该结点
System.out.print(getValueByIndex(w)+" ");
//标记已被访问
isVisited[w]=true;
//入队列
queue.addLast(w);
}
//寻找下一个邻接结点
w=getNextNeighbor(u, w);
}
}
} //对外公开函数,广度优先遍历
public void broadFirstSearch() {
for(int i=0;i<getNumOfVertex();i++) {
if(!isVisited[i]) {
broadFirstSearch(isVisited, i);
}
}
}
}

上面的public声明的depthFirstSearch()和broadFirstSearch()函数,是为了应对当该图是非连通图的情况,如果是非连通图,那么只通过一个结点是无法完全遍历所有结点的。

下面根据上面用来举例的图来构造测试类:

public class TestSearch {

    public static void main(String args[]) {
int n=8,e=9;//分别代表结点个数和边的数目
String labels[]={"1","2","3","4","5","6","7","8"};//结点的标识
AMWGraph graph=new AMWGraph(n);
for(String label:labels) {
graph.insertVertex(label);//插入结点
}
//插入九条边
graph.insertEdge(0, 1, 1);
graph.insertEdge(0, 2, 1);
graph.insertEdge(1, 3, 1);
graph.insertEdge(1, 4, 1);
graph.insertEdge(3, 7, 1);
graph.insertEdge(4, 7, 1);
graph.insertEdge(2, 5, 1);
graph.insertEdge(2, 6, 1);
graph.insertEdge(5, 6, 1);
graph.insertEdge(1, 0, 1);
graph.insertEdge(2, 0, 1);
graph.insertEdge(3, 1, 1);
graph.insertEdge(4, 1, 1);
graph.insertEdge(7, 3, 1);
graph.insertEdge(7, 4, 1);
graph.insertEdge(6, 2, 1);
graph.insertEdge(5, 2, 1);
graph.insertEdge(6, 5, 1); System.out.println("深度优先搜索序列为:");
graph.depthFirstSearch();
System.out.println();
System.out.println("广度优先搜索序列为:");
graph.broadFirstSearch();
}
}

运行后控制台输出如下:

转自:https://segmentfault.com/a/1190000002685782 和 https://segmentfault.com/a/1190000002685939

存储结构与邻接矩阵,深度优先和广度优先遍历及Java实现的更多相关文章

  1. 图的理解:深度优先和广度优先遍历及其 Java 实现

    遍历 图的遍历,所谓遍历,即是对结点的访问.一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略: 深度优先遍历 广度优先遍历 深度优先 深度优先遍历,从初始访问结点出发,我们知道 ...

  2. 图的深度优先和广度优先遍历(图以邻接表表示,由C++面向对象实现)

    学习了图的深度优先和广度优先遍历,发现不管是教材还是网上,大都为C语言函数式实现,为了加深理解,我以C++面向对象的方式把图的深度优先和广度优先遍历重写了一遍. 废话不多说,直接上代码: #inclu ...

  3. JavaScript实现树深度优先和广度优先遍历搜索

    1.前置条件 我们提前构建一棵树,类型为 Tree ,其节点类型为 Note.这里我们不进行过多的实现,简单描述下 Note 的结构: class Node{ constructor(data){ t ...

  4. 图的存储结构:邻接矩阵(邻接表)&链式前向星

    [概念]疏松图&稠密图: 疏松图指,点连接的边不多的图,反之(点连接的边多)则为稠密图. Tips:邻接矩阵与邻接表相比,疏松图多用邻接表,稠密图多用邻接矩阵. 邻接矩阵: 开一个二维数组gr ...

  5. 【PHP数据结构】图的遍历:深度优先与广度优先

    在上一篇文章中,我们学习完了图的相关的存储结构,也就是 邻接矩阵 和 邻接表 .它们分别就代表了最典型的 顺序存储 和 链式存储 两种类型.既然数据结构有了,那么我们接下来当然就是学习对这些数据结构的 ...

  6. 算法与数据结构(四) 图的物理存储结构与深搜、广搜(Swift版)

    开门见山,本篇博客就介绍图相关的东西.图其实就是树结构的升级版.上篇博客我们聊了树的一种,在后边的博客中我们还会介绍其他类型的树,比如红黑树,B树等等,以及这些树结构的应用.本篇博客我们就讲图的存储结 ...

  7. 多级树的深度遍历与广度遍历(Java实现)

    目录 多级树的深度遍历与广度遍历 节点模型 深度优先遍历 广度优先遍历 多级树的深度遍历与广度遍历 深度优先遍历与广度优先遍历其实是属于图算法的一种,多级树可以看做是一种特殊的图,所以多级数的深/广遍 ...

  8. C++编程练习(9)----“图的存储结构以及图的遍历“(邻接矩阵、深度优先遍历、广度优先遍历)

    图的存储结构 1)邻接矩阵 用两个数组来表示图,一个一维数组存储图中顶点信息,一个二维数组(邻接矩阵)存储图中边或弧的信息. 2)邻接表 3)十字链表 4)邻接多重表 5)边集数组 本文只用代码实现用 ...

  9. C语言实现数据结构的邻接矩阵----数组生成矩阵、打印、深度优先遍历和广度优先遍历

    写在前面 图的存储结构有两种:一种是基于二维数组的邻接矩阵表示法. 另一种是基于链表的的邻接表表示法. 在邻接矩阵中,可以如下表示顶点和边连接关系: 说明: 将顶点对应为下标,根据横纵坐标将矩阵中的某 ...

随机推荐

  1. Hadoop权威指南:数据完整性

    Hadoop权威指南:数据完整性 [TOC] 常用的错误检测码是CRC-32(循环冗余校验) HDFS的数据完整性 HDFS会对写入的所有数据计算校验和,并在读取数据时验证校验和 datanode负责 ...

  2. HDU 2585 [Hotel]字符串递归处理

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2585 题目大意:马克思要找个曾经去过的很好的旅馆,可惜他记不完整旅馆的名字.他有已知的部分信息和可能的 ...

  3. Oracle执行计划顺序

    先从最开头一直往右看,直到看到最右边的并列的地方,对于不并列的,靠右的先执行:对于并列的,靠上的先执行.      即并列的缩进块,从上往下执行,非并列的缩进块,从下往上执行. 如下示例: Execu ...

  4. JAVA_file(1)

    1.基本概念的理解 绝对路径:绝对路径就是你的主页上的文件或目录在硬盘上真正的路径,(URL和物理路径)例如:C:xyz est.txt 代表了test.txt文件的绝对路径.http://www.s ...

  5. node Express安装与使用(一)

    首先放上官网地址 http://www.expressjs.com.cn/ 学会查阅官方手册,它是最好的资料. 1.Express安装 首先确定你已经安装了 Node.js,然后去你创建的项目目录下( ...

  6. 使用jsCompress压缩混淆js代码的一些常见的问题和技巧

    不同的团队使用的js混淆器或压缩工具不一样,jsCompress是一款绿色的免费的js压缩工具,时代定制的UI团队推荐大家使用,不仅性能优越,而且操作非常人性化. 使用jsCompress.exe时, ...

  7. C#在win10(win8)下读写记事本注意事项

    分析:由于windows10或者windows8系统机制问题,C#在读写txt文件的时候,可能会出现如下问题(对路径“”的访问被拒绝): 解决: 1.我们在C盘下面新建立一个记事本,会发下类似如下报错 ...

  8. 使用JDT.AST解析java源码

    在做java源码的静态代码审计时,最基础的就是对java文件进行解析,从而获取到此java文件的相关信息: 在java文件中所存在的东西很多,很复杂,难以用相关的正则表达式去一一匹配.但是,eclip ...

  9. ASP.NET Core MVC之Serilog日志处理,你了解多少?

    前言 本节我们来看看ASP.NET Core MVC中比较常用的功能,对于导入和导出目前仍在探索中,项目需要自定义列合并,所以事先探索了如何在ASP.NET Core MVC进行导入.导出,更高级的内 ...

  10. 【排序算法】快速插入排序算法 Java实现

    基本思想 每次将一个待排序的记录,按其关键字大小插入到前面已经排好序的子序列中的适当位置,直到全部插入完成. 设数组为a[0...n-1] 初始时,a[0]自成一个有序区,无序区为a[1...n-1] ...